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Abstract
In this paper we present a framework for spectral
clustering based on the following simple scheme:
sample a subset of the input points, compute the
clusters for the sampled subset using weighted ker-
nel k-means (Dhillon et al. 2004) and use the re-
sulting centers to compute a clustering for the re-
maining data points. For the case where the points
are sampled uniformly at random without replace-
ment, we show that the number of samples required
depends mainly on the number of clusters and the
diameter of the set of points in the kernel space. Ex-
periments show that the proposed framework out-
performs the approaches based on the Nyström ap-
proximation both in terms of accuracy and compu-
tation time.

1 Introduction
Clustering is one of the fundamental problems in machine
learning. Spectral clustering techniques [Von Luxburg, 2007]
have been shown to outperform other clustering methods,
such as k-means or single-linkage algorithms. However, two
significant obstacles to scaling up spectral clustering to large
datasets include building an affinity matrix between pairs of
data points and computing the eigenvectors of the resulting
normalized graph Laplacian, both of which become compu-
tationally prohibitive for large data-sets.

Approaches to scaling up spectral clustering typically fo-
cus on improving the efficiency of computing the eigenvec-
tors using various matrix approximation schemes. A popular
technique for matrix approximation is the Nyström method
[Williams and Seeger, 2001] which constructs a low rank ap-
proximation by sampling a subset of the columns of the affin-
ity matrix. Various sampling schemes have been proposed
in the literature to sample this subset of columns [Kumar et
al., 2012; Gittens and Mahoney, 2013], offering a tradeoff be-
tween the complexity of the sampling distribution and quality
of the approximation. However other than uniform sampling,
the practicality of these approaches for massive datasets may
be limited [Yan et al., 2009]. The major disadvantage of these
methods is that if l columns are sampled, they involve the
computation of eigenvectors of a sub-matrix of size l × l,
which can itself be computationally expensive when l is large.

Also, the subsequent k-means step used for rounding the clus-
ter assignment has to be performed for all the input points.

The connection between spectral clustering and weighted
kernel k-means was first introduced in [Dhillon et al., 2004].
In this paper, we use this connection to propose a simple
framework for spectral clustering that samples a subset S of
the input points, computes the clusters for S using weighted
kernel k-means and uses the resulting centers to compute a
clustering for rest of the data points. The proposed framework
does not require computation of the entire affinity matrix and
does not require the computation of eigenvectors of the se-
lected sub-matrix. Sampling algorithms developed for the
Nyström approximation can be leveraged to obtain a trade-
off between accuracy and computational efficiency. In fact,
our experiments show that the use of sampling followed by
weighted kernel k-means outperforms sampling followed by
the Nyström approximation. Since the proposed method uses
weighted kernel k-means to compute the clusters, it is easy to
parallelize. The contributions of this paper are:
• Prior work on the Nyström approximation such as [Git-

tens and Mahoney, 2013; Talwalkar and Rostamizadeh,
2010] provide approximation guarantees with respect to
various matrix norms, but not with respect to the spectral
clustering objective itself. We show that matrix norm er-
rors are not always indicative of the quality of spectral
clustering.
• We propose a framework for spectral clustering that ap-

plies sampling followed by the weighted kernel k-means
algorithm instead of approximating the affinity matrix or
the Laplacian.
• Without making any assumptions about the data, we

show that when points are sampled uniformly at random
without replacement, the following theorem holds.

Theorem 1. Let 0 < δ < 1, α ≥ 1, 0 < β < 1 and ε > 0
be approximation parameters. Let A be an α-approximation
algorithm for the weighted kernel k-means problem. Given a
set of n points, V , suppose we sample a subset S ⊂ V of size
s uniformly at random without replacement such that,

s ≥ ln
(
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δ
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1

n

)
/
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2β2ε2
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+
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n
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δ

))
where ∆ = maxi,j wiwj‖φ(ai) − φ(aj)‖2. If we run algo-
rithm A with input S, then for the solution C∗ obtained, with



probability at least 1− δ,

NCut(G,C∗) ≤ 4(α+ β)NCut(G,Copt) + ε

In other words, by choosing sufficient number of samples s,
we can obtain centers that provide a good approximation to
the optimal cluster centers. As the input size n increases,
the term (1/n) vanishes, resulting in a bound for s that is
independent of n. To the best of our knowledge, the relation
between the number of samples and the spectral clustering
objective studied in the proposed work has not been explored
in the literature.

2 Preliminaries
2.1 Weighted Kernel k-means
Given a set of n points V = {v1, v2..., vn} with associated
weights {w1, w2...wn} and a kernel matrix K, the weighted
kernel k-means objective for clusters V1, V2, ...Vk with cen-
ters C = {C1, C2, ..Ck} is defined as:

W(V,C) =

k∑
i=1

∑
vj∈Vi

wj‖φ(vj)− Ci‖2

where Ci =

∑
vj∈Vi

wjφ(vj)∑
vj∈Vi

‖wj‖ . Here φ(v) is the kernel function

that maps the point v to a higher dimensional feature space.
It was shown in [Dhillon et al., 2004],

‖φ(vi)− Cj‖2 = Kii −
2τ1(i, j)

deg(Vj)
+

τ2(Vj)

(deg(Vj))2

where deg(Vi) =
∑
vj∈Vi

wj , τ1(i, j) =
∑
vl∈Vj

wlKil and

τ2(Vj) =
∑

vl,vm∈Vj
wlwmKlm.

Definition 1. Let A be an approximation algorithm for the
weighted kernel k-means objective. Let α ≥ 1. A is an α-
approximation algorithm if the set of centers, C, returned by
A satisfies,

W(V,C) ≤ αW(V,Copt)

where Copt is the set of optimal centers.

2.2 Spectral Clustering Using Norm-Cuts
In spectral clustering, we are given a graph G = (V,A),
which is made up of a set of n vertices V . The affinity matrix
A is n × n whose entries represent the similarity between
vertices. If V1, V2 are subsets of V , let links(V1, V2) =∑
i∈V1,j∈V2

Aij .
Furthermore, let degree(V1) = links(V1, V ). The graph

partitioning problem seeks to partition the graph into k dis-
joint clusters V1, ..., Vk. A number of different graph parti-
tioning objectives have been proposed and studied. In this
paper, we will focus on the normalized cut objective. The
goal is to minimize the following objective over all possible
clusterings {V1..Vk},

NCut(G, {V1..Vk}) =

k∑
i=1

links(Vi, V \Vi)
degree(Vi)

2.3 Relation Between Weighted Kernel k-means
And Spectral Clustering

To convert a spectral clustering problem to a weighted kernel
k-means problem, it was shown in [Dhillon et al., 2004] that
we can set W = D and K = σD−1 + D−1AD−1, where
σ = k/(n− k). Here the term σD−1 is added to ensure K is
positive definite and does not change the optimal clustering.

We note that a set of centers C for the weighted kernel k-
means problem induces a clustering V1...Vk for the spectral
clustering problem. Since both objectives are equivalent, we
use W(V,C), NCut(G, {V1..Vk}) and NCut(G,C) inter-
changeably throughout the remainder of this paper. We also
use NCut(G, k) = minC NCut(G,C) to represent the op-
timal partitioning of G into k clusters.

3 Why Matrix Norms Are Insufficient For
Norm Cuts-based Spectral Clustering

The Nyström approximation has been extensively studied
with respect to various matrix error norms, such as the Frobe-
nius norm, trace norm and the spectral norm [Gittens and
Mahoney, 2013; Talwalkar and Rostamizadeh, 2010]. In this
section, we show that approximation of these norms is nei-
ther necessary nor sufficient for producing a good clustering
with respect to the norm cuts objective. For simplicity, we
focus on the trace norm error. However the examples can be
extended to any matrix norm. Also, for this section, we let
NCut(A, k) represent the optimal partitioning of the graph
with affinity matrix A into k clusters.

Lemma 1. Preserving trace norm is not sufficient for an ap-
proximation to be good with respect to the norm cuts objec-
tive.

We construct two matrices that are extremely similar in
terms of their trace norms, but have a significantly different
norm cuts objective. Here, the trace norm of a matrix A is
denoted as ‖A‖∗ =

∑n
i=1 |λi(A)|, where λi(A) is the ith

eigenvalue of A.
In other words, we show that for any value of ε > 0, there

exists n, k, A and B such that, A and B represent graphs
GA, GB with n vertices, and ‖A − B‖∗ ≤ (1 + ε)‖A‖∗ and
NCut(A, k) = O(k)·NCut(B, k). Note, that the maximum
value of NCut(A, k) is k.

Let A and B be the affinity matrices for undirected, un-
weighted graphs that have n vertices and k and k − 1 equal
sized components, respectively. Further, we assume that each
component is completely connected with no self loops. Since
each component in A is a complete graph on n/k vertices, its
eigenvalues are−1 with multiplicity (n/k)−1 and (n/k)−1
with multiplicity 1. Since each component inA is regular, the
eigen values of the normalized symmetric Laplacian ofA (de-
noted by L(A)) are given as, λi(L(A)) = 1 − (1/∆)λi(A)
where ∆ = (n/k)− 1. In other words, L(A) has eigenvalues
n/(n− k) with multiplicity n− k and 0 with multiplicity k.
Similarly, L(B) has eigenvalues n/(n − k + 1) with multi-
plicity n−k+1 and 0 with multiplicity k−1. A more general
statement in this context can be found in [Butler, 2007].

Now we compare the trace norm of the difference of the



Algorithm 1 Proposed Framework for Spectral Clustering

Input: Affinity Matrix A, number of clusters k, number of
samples s
Output: Matrix Ŷ (Ŷij 6= 0 only if point i belongs to
cluster j)
Procedure:
sub← sample(s)
Asub ← A(sub, sub)
Y ← weighted kernel kmeans(Asub, k)

Ŷ ← diffuse(Y,A, sub)

two Laplacians, L(A) and L(B), as follows,

‖L(A)‖∗ − ‖L(B)‖2∗ =

n−k∑
i=1

|λi(L(A))− λi(L(B))|

=

n−k∑
i=1

(
n

n− k
− n

n− k′

)
+

n

n− k′

=
2n

n− k + 1

where, k′ = k − 1. Given a value of ε, we can choose ap-
propriate values of n, k such that ‖L(A)‖2∗ − ‖L(B)‖2∗ ≤
(1 + ε)‖L(A)‖2∗. Now we examine the norm cuts ratio when
we try to partition these graphs into exactly k clusters. Thus,
NCut(A, k) = 0, since the graph has exactly k components.
However for B, one of the k − 1 components will have to
be split into two equal parts to minimize the norm cuts ra-
tio. This results in a cut that involves n

k−1 ( n
k−1 + 1)/2 edges.

Thus the norm cuts ratio for B is given as,

NCut(B, k) = k −
(
n(n+ 2k − 2)/(k + 1)2

)
n(n+ k − 1)/2(k + 1)2

= k − n+ 2k − 2

4(n+ k − 1)

The second term reduces to a constant for a sufficiently large
value of n, resulting in a norm cuts ratio of O(k).
Lemma 2. Preserving trace norm is not necessary for an ap-
proximation to be good with respect to the norm cuts objec-
tive.

Proof. To show that preserving matrix norms is not neces-
sary for an approximation to be good with respect to the norm
cuts objective, we consider the case of a block diagonal ma-
trix A with k blocks. Let L(A) be the corresponding nor-
malized Laplacian. The result of norm cuts based spectral
clustering will depend on the eigenvectors of L(A) and the
relative order of the corresponding eigenvalues. We note that
L(A) has the same eigenvectors as L(A)2, L(A)3, etc. Thus,
L(A), L(A)2 return the same spectral clustering. However
‖L(A)‖∗ − ‖L(A)i‖∗ can be arbitrarily high.

4 Proposed Framework
The proposed framework for spectral clustering is de-

scribed in Algorithm 1. The overall procedure consists of

Algorithm 2 Diffuse

Input: Matrix Ŷ , Affinity MatrixA, set of sampled indices
S
Output: Matrix Y (Yij 6= 0 only if point i belongs to
cluster j)
Procedure:
for each i ∈ S do

for j = 1:k do
Yij ← Ŷij
if Yij 6= 0 then
πj ← πj ∪ ai

end if
end for

end for
for each i /∈ S do

for c = 1 : k do

d(ai,mc)← Kii−
2
∑

aj∈πc
wjKij∑

aj∈πc
wj

+

∑
aj ,al∈πc

wjwlKjl

(
∑

aj∈πc
wj)2

end for
j ←

k
arg min
c=1

d(ai,mc)

Yij ← 1
end for

three stages. In the first stage, a subset of the input points
are sampled according to some distribution. This subset is
indicated as sub. In the second stage, the clusters are com-
puted using weighted kernel k-means. However, instead of
using the entire affinity matrix, as in [Dhillon et al., 2004],
we only use the principal sub-matrix induced by indices in
sub. The final step involves using the cluster centers returned
by the weighted kernel k-means procedure to assign clusters
to the remaining data points. The procedure for this step is
described in Algorithm 2.

This is scalable to larger datasets because it does not re-
quire explicit computation of the eigenvectors. Also it only
requires the computation of a sub-matrix of size n×k, which
can result in significant savings in memory. Weighted kernel
k-means is extremely easy to parallelize.

5 Analysis

In this section, we present the proof of Theorem 1. We ex-
tend the analysis in [Czumaj and Sohler, 2010] to the case
of sampling without replacement. Specifically, uniform sam-
pling without replacement allows us to use the sharper bound
offered by the Serfling inequality stated below. We refer the
reader to [Bardenet et al., 2015] for a more thorough discus-
sion.

Lemma 3. [Serfling, 1974; Bardenet et al., 2015] LetX1..Xs

be random variables sampled uniformly without replacement.



LetX = X1 + ...+Xn and 0 ≤ Xi ≤ ∆. Then for all γ > 0,

P

[
s∑
t=1

Xt − E[Xt]

s
≥ γ

]
≤ exp

(
− 2sγ2

(1− (s− 1)/n)∆2

)
Definition 2. Let β > 0 and α ≥ 1. A set of k centers C is a
β-bad, α-approximation if

W(V,C) > (α+ β)W(V,Copt)

If not, C is said to be a β-good, α-approximation.
We will need the following lemmas.

Lemma 4. Let S be a subset of V of size s such that,

s ≥ ln

(
1

δ

)(
1 +

1

n

)
/

(
2β2m2

∆2α2
+

ln(1/δ)

n

)
If an α-approximation algorithm for weighted kernel k-
means A is run on input S, then for the set of centers, CA,
obtained, with probability ≥ 1− δ,

W(S,CA) ≤ 4(α+ β)
s

n
W(V,Copt)

where Copt is the set of optimal centers for V and m =
W(V,Copt)/n.

Proof. For each point vi ∈ S, let Xi = wi‖φ(vi) −
Ci‖2 where Ci the nearest center to φ(vi) in Copt. Then

W(S,Copt) =
s∑
i=1

Xi. We also know that E[Xi] = m. Let

Xi be bounded in the interval [0,∆].

Pr[W(S,Copt) > (1 +
β

α
)
s

n
W(V,Copt)]

= Pr

[∑
Xi > (1 +

β

α
)sm)

]

≤ e
−

2s· β
2

α2 ·m
2

(1−s/n)∆2

The last step is obtained by applying the Serfling inequal-

ity. Note, e−
2s· β

2

α2 ·m
2

(1−s/n)∆2 ≤ δ if

s ≥ ln

(
1

δ

)(
1 +

1

n

)
/

(
2β2m2

∆2α2
+

ln(1/δ)

n

)
Let C ′ be the set of k centers in S obtained by replacing

each C ∈ Copt by its nearest neighbor in S. From the weak-
ened triangle inequality, it can be shown that W(S,C ′) ≤
4W(S,Copt). This implies with probability at least 1 − δ, S
contains k centers with cost at most 4(1 + β

α ) snW(V,Copt).
In other words,

W(S,C ′) ≤ 4(1 +
β

α
)
s

n
W(V,Copt)

If C ′′ is the set of optimum centers for W(S,C), then
W(S,C ′′) ≤ W(S,C ′)

Since A is an α-approximation algorithm,
W(S,CA) ≤ αW(S,C ′′)

This implies,
W(S,CA) ≤ αW(S,C ′)

The lemma now follows.

Lemma 5. Let S be a subset of V of size s, sampled uni-
formly at random such that,

s ≥ ln
(

1

δ

)(
1 +

1

n

)
/

(
β2m2

∆2
+

1

n
ln

(
1

δ

))
Let χ be the set of 12β-bad 4α-approximations of W(V,Copt)
then,

Pr[Cb ⊂ S and Cb ∈ χ and W(S,Cb) ≤ 4(α+ β)m] ≤ δ

Proof. Let s ≥ 4α+5β
β k. Let Cb ∈ χ be a 12β-bad 4α-

approximation of W(V,Copt). If Cb ⊂ S, let S∗ be the subset
of S with Cb removed, such that |S∗| = s− k. Thus,

Pr[Cb ⊂ S and
W(S,Cb)

s
≤ 4(α+ β)m]

= Pr

[
W(S,Cb)

s
≤ 4(α+ β)m

∣∣∣ Cb ⊂ S] · Pr[Cb ⊂ S]

≤ Pr
[

W(S∗, Cb)

s− k
≤ 4

s

s− k
(α+ β)m

]
· Pr[Cb ⊂ S]

≤ Pr
[

W(S∗, Cb)

s− k
≤ (4α+ 5β)m

]
· Pr[Cb ⊂ S] (1)

The second step holds because the mean remains unchanged
at each step when the elements are chosen uniformly at ran-
dom without replacement and W(S,Cb) = W(S∗, Cb) when
Cb ⊂ S. The third step holds since s ≥ 4α+5β

β k.
Let Yi denote the distance of point vi ∈ S from its closest

center in Cb. Since Cb ∈ χ, E[Yi] ≥ (4α+ 12β)m. Thus,

Pr

[
W(S∗, Cb)

s− k
≤ (4α+ 5β)m

]

= Pr

[
s−k∑
i=1

Yi ≤ (4α+ 5β)m

]

≤ Pr

[
s−k∑
i=1

Yi ≤
4α+ 5β

4α+ 12β
E[

s−k∑
i=1

Yi]

]

≤ Pr

[
s−k∑
i=1

Yi ≤
(

1− 7β

4α+ 12β

)
E[

s−k∑
i=1

Yi]

]

≤ Pr

[
s−k∑
i=1

Yi − E[Yi] ≤
(
− 7β

4α+ 12β

)
E[

s−k∑
i=1

Yi]

]

≤ exp

−2(s− k)

(
7βE[

∑s−k
i=1 Yi]

4α+12β

)2
(1− (s− 1)/n)∆2

 (2)

≤ exp

(
−2(s− k)

49β2m2

(1− (s− 1)/n)∆2

)
Similar to the previous lemma, we have used the Serfling

bound to obtain (2). Thus it follows that,

Pr

[
W(S∗, Cb)

s− k
≤ (4α+ 5β)m

]
≤ e−

sβ2m2

(1−(s−1)/n)∆2 (3)



We note, Pr[Cb ⊂ S] ≤ (s/n)k and |χ| ≤ nk. Using this
and (3) in (1), we have,

Pr[Cb ⊂ S and Cb ∈ χ and
W(S,Cb)

s
≤ 4(α+ β)m]

≤
∑
Cb∈χ

Pr[Cb ⊂ S and
W(S,Cb)

s
≤ 4(α+ β)m]

≤
∑
Cb∈χ

Pr

[
W(S∗, Cb)

s− k
≤ (4α+ 5β)m

]
· (s/n)k

≤ nk · e−
sβ2m2

(1−(s−1)/n)∆2 · (s/n)k

≤ sk · e−
sβ2m2

(1−(s−1)/n)∆2

which is upper bounded by δ when,

s ≥ ln
(

1

δ

)(
1 +

1

n

)
/

(
β2m2

∆2
+

1

n
ln

(
1

δ

))

Next, we use these lemmas to prove Theorem 1.

Proof. Let β∗ be some constant. Let S ⊆ V be a subset of s
points chosen uniformly at random such that,

s ≥ ln
(

1

δ

)(
1 +

1

n

)
/

(
2(β∗)2m2

∆2α2
+

1

n
ln

(
1

δ

))
Then from Lemma 3, we have, if C ⊆ S and C ∈ χ, with

probability at least 1− δ,

W(S,C) > 4(α+ β∗)m

On the other hand, if we run algorithmA for set S, then by
Lemma 2, the resulting set of centers satisfies, with probabil-
ity at least 1− δ,

W(S,C) ≤ 4(α+ β∗)m

This implies with probability at least 1 − 2δ the set C is
a (12β)-good (4α)-approximation. In order to remove the
dependence on the number of samples on m,

• If m ≤ ε, we simply set β = (1/
√

2)ε/m. In this case
we will obtain the following bound on s.

s ≥ ln
(

1

δ

)(
1 +

1

n

)
/

(
ε2

∆2α2
+

1

n
ln

(
1

δ

))
• If m > ε, we set β = 3β∗ to obtain,

s ≥ ln
(

1

δ

)(
1 +

1

n

)
/

(
2β2ε2

∆2α2
+

1

n
ln

(
1

δ

))
The theorem now follows.

Name Instances Attributes Classes
Aggregation (Agg) 788 2 7

Flame (Fla) 240 2 2
A.K‘s toy problem (AK) 373 2 2

Table 1: The synthetic datasets used in our experiments.

(a) (b)

Figure 2: Figure (a) shows the norm cuts ratio, whereas (b) shows
the time taken by different methods for a graph with 230400 nodes.
This shows that methods using weighted kernel k-means outperform
their Nyström counterparts with respect to computation time, while
obtaining a comparable norm cuts ratio.

6 Experiments
We now present experimental results to show that the use of
sampling followed by weighted kernel k-means outperforms
sampling followed by the Nyström approximation. We eval-
uated the performance of two variants of the proposed frame-
work. The first variant uses uniform sampling without re-
placement to sample a subset of the input points (denoted as
wkk-unif). The second variant samples points based on the
norm of the corresponding column in the affinity matrix (de-
noted as wkk-col). These results were compared against ap-
proaches described in [Dhillon et al., 2004] (denoted as kulis)
and [Yu and Shi, 2003] (denoted as shi). Both of these meth-
ods use the entire affinity matrix and do not perform any sam-
pling. We also compare against the Nyström approximation
when the columns are sampled uniformly at random (denoted
as nys-unif) and sampled based on their column norm (de-
noted as nys-col).

6.1 Synthetic Data
We evaluated the norm cuts ratio and the computation time on
six commonly used synthetic datasets [Bouneffouf and Birol,
2015], described in Table 1, and repeated our evaluations 10
times. We measured the clustering quality of each algorithm
using the average accuracy across different datasets.

The results are shown in Figure 1. The first row shows the
norm cuts ratio obtained by various approaches. It can be seen
that norm cuts ratio for wkk-unif is comparable to kulis. This
supports the result presented in Theorem 1. Furthermore, the
second row in Figure 1 shows the time taken by each ap-
proach. This highlights the speedup obtained by using wkk-
unif and wkk-col over shi and kulis. For all the datasets, the



(d) Agg (e) R15 (f) Fla

Figure 1: The first and second rows show the norm cuts ratio and the time taken for each dataset. It can be seen that wkk-unif and wkk-col,
which are variants of the proposed framework yield results similar to kulis and shi, which use the entire affinity matrix. wkk-unif and wkk-col
also outperform nys-col and nys-unif in terms of accuracy and computation time.

approaches based on combining sampling and the weighted
kernel k-means algorithm outperform approaches based on
the Nyström approximation both in terms of accuracy and
computation time.

6.2 Image Segmentation
One of the most popular applications of spectral clustering
is image segmentation. In this section, we describe results
obtained on an image segmentation benchmark [Yu and Shi,
2003]. The affinity matrix and the final discretization were
computed using the approach of [Yu and Shi, 2003].

Experimental results in Figure 2 show that wkk-unif and
wkk-col obtain the same accuracy as the Nyström based ap-
proaches, while taking significantly less time. In cases where
only 10% of the columns were sampled, wkk-unif and wkk-
col achieved a lower norm cuts ratio compared to nys-unif
and nys-col. The baseline methods shi and kulis use the en-
tire affinity matrix. Thus they can achieve lower norm cuts
ratio, but have a significantly higher computation time.

In order to study how the proposed approach scales to
larger graphs, we vary the size of the input images. The re-
sults are shown in Figure 3. For shi, the time taken scales
cubically with the size of the graph. Hence it is unsuitable for
large graphs. In contrast, kulis, wkk-unif and wkk-col scale
almost linearly with the size of the graph. Both wkk-unif and
wkk-col outperform kulis in terms of execution time. They
also outperform the Nyström-based approaches both in terms
of accuracy and computation time. These results show that
uniform sampling followed by the weighted kernel k-means
algorithm scales well in practice.

Figure 3: Behavior of the various approaches when the graph size
increases. This shows that by using only 50% of the points, wkk-
unif and wkk-col achieve accuracy comparable to kulis and shi while
taking significantly less time. wkk-unif and wkk-col also outperform
nys-unif and nys-col in terms of computation time.

7 Conclusion

This paper presented a framework for spectral clustering
based on combining sampling and the weighted kernel k-
means algorithm. If the points are sampled uniformly at ran-
dom without replacement, we show that for large datasets, the
number of samples required, is independent of the input size
and depends only on the number of clusters and the diame-
ter of the set of points in the kernel space. Experiments show
that approaches based on the proposed framework outperform
approaches based on the Nyström approximation.
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