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Abstract— As robots continue to create long-term maps, the
amount of information that they need to handle increases
over time. In terms of place recognition, this implies that
the number of images being considered may increase until
exceeding the computational resources of the robot. In this
paper we consider a scenario where, given multiple independent
large maps, possibly from different cities or locations, a robot
must effectively and in real time decide whether it can localize
itself in one of those known maps. Since the number of images
to be handled by such a system is likely to be extremely
large, we find that it is beneficial to decompose the set of
images into independent groups or environments. This raises
a new question: Given a query image, how do we select the
best environment? This paper proposes a similarity criterion
that can be used to solve this problem. It is based on the
observation that, if each environment is described in terms of
its co-occurrent features, similarity between environments can
be established by comparing their co-occurrence matrices. We
show that this leads to a novel place recognition algorithm that
divides the collection of images into environments and arranges
them in a hierarchy of inverted indices. By selecting first the
relevant environment for the operating robot, we can reduce
the number of images to perform the actual loop detection,
reducing the execution time while preserving the accuracy. The
practicality of this approach is shown through experimental
results on several large datasets covering a combined distance
of more than 750Km.

I. INTRODUCTION

The problem of place recognition has received consider-
able attention in the past decade. In its most general form,
the problem can be formulated as searching for a query
image in a database of existing images. Consequently, a large
number of techniques for describing and comparing images
and for retrieving the best matches have been proposed in the
literature [3], [15]. One such popular framework is the Bag
Of Words framework introduced in [22]. Here descriptors are
extracted from the images and quantized using a vocabulary
or code book of visual words. A visual word is a cluster that
results from some discretization of the descriptor space. This
results in a term frequency (tf) vector based representation of
the given images. Queries can then be answered computing
a similarity value using an Inverted Index, a structure that
stores the list of images where each visual word appears.
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Fig. 1. Outline of the ideas proposed in the paper. (a) The figure on
the left shows a potential query image being compared against a set of
database images grouped into environments shown on the right. Different
rows represent images obtained from different datasets. (b) The similarity
scores computed using the proposed criterion to compare the query image to
the existing environments. The plot of the scores shows that it is sufficiently
discriminative to be used to determine the environment the image is most
likely to be from. (c) Selecting the best environment helps reduce the number
of images to be compared against, thereby improving the search time. We
show the potential savings in computation time while querying a database
of 85,000 images.

In the context of place recognition using the Bag of Words
framework, an increase in the number of images increases the
query time, since the underlying system is essentially a linear
search. This has motivated recent work that aggregates term
frequency (tf) vectors of consecutive frames and constructs
a tree based lookup approach; this results in a significant
improvement in query time at only a small loss in precision
and recall [12]. For example, MacTavish & Barfoot [12]
build accumulated bag of words of consecutive images to
match groups of images with a single inverted index. This
paper follows a similar vein, but it differs from [12] in
two important ways. First, we show that the increase in
query time for a simple inverted index is directly addressable
by maintaining multiple sparse inverted indices. In other
words, as the number of images increases, the sparsity of
a single large inverted index is reduced. This reduces the
efficiency and accuracy of the query retrieval process as more
candidates need to be examined. However, separating the set



of places into subsets describing environments and building
separate smaller inverted indices preserves the sparsity that
we seek, thereby speeding up the querying process.

This decomposes the search problem into two parts:
searching for the best subset and finding the best match
within that subset. Since each subset is assumed to describe
an environment, we call this problem environment selection.
The second difference between [12] and this paper is the
choice of the similarity criterion to select the best subset. At a
conceptual level, environments can be treated as a probability
distribution over all possible word sequences. MacTavish &
Barfoot [12] use the first order statistics of this distribution,
i.e. aggregated tf-vectors, for this purpose. In this paper
we propose the use of the second order statistics of this
distribution, which are well represented by the frequencies
of co-occurrence of word pairs in the environment. This
word-word co-occurrence (WWC) matrix representation of
the environments motivates a novel similarity criterion that
is much more effective for environment selection. This is
important because the aggregated tf-vectors cease to be
discriminative at larger temporal scales [5] [12], leading to
significant loss in accuracy.

An overview of our approach is presented in Figure 1.
Our proposal is based on considering subsets of images
describing environments (represented by bags of binary
words [22], [19]). Each environment is described in terms of
its co-occurrent words. Similarity between environments is
established by comparing their co-occurrence matrices. Final
image-to-image loop detection is computed by using the
environment-specific database. The important contributions
of this paper are:
• We introduce a new problem called Environment Se-

lection and propose a similarity criterion to deter-
mine similarity between image sets at the environ-
ment scale by comparing their corresponding word-
word co-occurrence (WWC) matrices. We also provide
its derivation from a direct product graph kernel. This
is described in Section III.

• A hierarchical approach to place recognition based
on the proposed similarity criterion, as described in
Section IV.

• Experimentally we verify the improvement in the query
time on datasets that span a distance of more than
750Km.

• In addition we also provide an experimental analysis of
the properties of the proposed similarity criterion.

II. RELATED WORK

Bags of words are a popular choice when the aim is long-
term mapping and large scale place recognition [12], [17],
[18], [6], [4]. This involves partitioning an image descriptor
space given some training data to build a vocabulary whose
words are the resulting cluster centers. Feature descriptors
obtained from an image can be quantized to their nearest
words using this vocabulary. Images can then be represented
by a vector indicating the proportion of each word in the
image. This together with an inverted index (or inverted file)

allows the creation of a place database for efficient image
retrieval.

FAB-MAP 2 [4] is one of the most notable works that
makes use of words and an inverted index to find loops in
a 1000 Km trajectory. The appearance information of the
vocabulary is enriched with the spatial relationships of the
words that co-occur in the training data. This is encoded
in a Chow Liu tree to approximate the co-occurrence joint
distribution and to reduce the memory requirements. They
use a probabilistic formulation to compute the probability
of a new frame being a revisited place or a new one. The
matches that reach a fixed threshold are considered loop
closures. In our work, we build co-occurrence graphs of
words present in full environments to compare them online
with the words that co-occur when querying the database.

The initial motivation for using co-occurrences to deter-
mine similarity came from [14] which leverages covisibility
information to improve the accuracy of place recognition.
The covisibility graph, being topometric in nature results in
landmark-centric notion of places. While we do not harness
the power of the covisibility graph in this paper, we note
that it inherently relies on the same contextual information
that we seek. This is because, foreground elements (like
cars and people) are less likely to be covisible with the
same background features, resulting in weak edges in the
covisibility graph.

The problem of establishing similarity between environ-
ments is closely related to scene categorization described
in the computer vision literature. For example, in [5], the
authors show that there are distinct stylistic elements that
describe a city and can be used to distinguish it from other
cities. This is achieved through the use of discriminative
learning and iterative clustering of image patches obtained
from various images of the environment. In [11] images are
classified according to the depicted scene by augmenting
visual words with spatial information. However, these works
do not address the final problem of detecting a loop in a
map. For mapping, the authors of [17] present an approach
to incrementally discover topics that can describe and group
together images collected in the same place. Then, to ad-
dress scalability, the most distinctive areas are retained by
clustering the topic space.

Scalability is one of the main issues to address in long-
term mapping. A large collection of images affect not only to
the computational requirements but also the accuracy of the
system due to the confusion that additional data causes. An
efficient management of the available memory can achieve
real-time performance in large maps [10]. However, this
requires disregarding observation of places, leading to miss
matches in future operations. When considering all the
processed places, hierarchical approaches tackle scalability
by dividing the image collection into tractable groups, so that
only the most promising ones are inspected. For example,
the work in [13] approaches the problem in two steps: a
global localization yields a subset of candidate images by
matching hue histograms, and a final single-image match is
obtained by comparing SIFT features. However, they access



the images sequentially, which is less efficient than using a
data structure as an inverted index [22].

Similarly, the authors of [12] aim to achieve logarithmic
complexity localization by grouping images together. They
analyze the optimal group size to compute accumulative
bag-of-words vectors and obtain matches between groups.
Nevertheless, they do not compute an image-to-image match
required to close a loop in a SLAM map.

III. SIMILARITY CRITERION

We begin by assuming that two visual words co-occur
if they are visible in the same image and the distance
(in pixels) between their corresponding key points in the
image is less than a threshold. We define a word-word co-
occurrence (WWC) matrix as a symmetric matrix W where
entry W (i, j) contains the co-occurrence frequency of words
wi and wj .

Formally, suppose we are given two environments, E1 and
E2, with WWC matrices WE1

and WE2
respectively and a

vocabulary of cardinality |V |. We define an environment as
a sequence of images collected by an agent around some
physical area.

In order to account for the various word-word inter-
dependencies, which is a characteristic attribute of any
environment, we consider the second order statistics of the
distribution. In order to account for co-occurrence of a pair
of words, we propose the following expression to compute
the similarity:

S(E1, E2) =

|V |∑
i,j=1

min[WE1
(i, j),WE2

(i, j)]. (1)

Before we present the justification for this criterion, we
briefly outline graph kernels that are used to compare two
graphs.

A. Graph Kernels

Graph kernels are symmetric, positive semi-definite func-
tions which measure the similarity between two graphs or
between two nodes of a graph. In this paper, we use the
direct product graph kernel. In this kernel, random walks
are generated from each candidate graph being compared
and the degree of similarity is determined by counting the
number of common random walks [9], [7].

Before we describe the direct product graph kernels, we
specify the notation being used [24]. Specifically, a graph G
consists of an ordered set of vertices ζ and a set of undirected
edges Υ. This is represented as a matrix where Υij = 1 if
there is an edge between vertices vi and vj , and 0 otherwise.
Each edge (vi, vj) is also associated with a weight wij . The
adjacency matrix of the graph is represented as A (such that
Aij = wij). D is the diagonal matrix of node degrees, i.e.
Dii =

∑
j Aij . The direct product graph G× = {ζ×,Υ×}

of two graphs G1 and G2 is given by ζ× = ζ1 × ζ2 and
Υ× = Υ1 ⊗Υ2, where ⊗ denotes the Kronecker product of
two matrices. Let p1 and p2 be the starting probabilities of
the random walks on G1 and G2, respectively. The starting

probabilities of the random walks on the product graph is
given by p× = p1 ⊗ p2. The stopping probabilities q1, q2
and q× are defined similarly. The graph kernel can now be
described as

K(G1, G2) =

∞∑
i=1

λiq×Γi
×p×, (2)

where λi is a decay factor. Each entry in Γ× corresponds to a
pair of edges ((e1 = v1i , v

1
j ) from graph G1 and (e2 = v2i , v

2
j )

from graph G2 ) such that,

Γ×(i, j) = f(v1i , v
2
i , v

1
j , v

2
j , e

1, e2). (3)

Note that no assumptions have been made about the sizes
of G1 and G2. The basic idea is that each walk in the
direct product graph is equivalent to a joint walk in the two
graphs G1 and G2. Thus the similarity of the two graphs can
be determined using the weight of the walks in the direct
product graph.

B. Theoretical Justification

In this section, we describe how the similarity criterion
described earlier can be derived from the direct product
graph kernel. In the context of place recognition using the
bag-of-words approach, we assume that the environment is
a stochastic process that generates a document based on
an unknown underlying probability distribution over all the
words in the vocabulary, i.e.

P (w1, w2, ..., w|V ||E)

where |V | is the number of words in the vocabulary.
Now for two environments to be similar, we impose the

restriction that their corresponding joint distributions should
be similar.

However, we note that computing the similarity between
two joint probability distributions is prohibitively expensive
in practice. We also note that the results in [5] indicate that
comparing first order marginals P (wi|E1) and P (wi|E2) is
not sufficiently accurate. Hence in this paper, we propose the
use of second order marginal distributions, i.e P (wi, wj |E1)
and P (wi, wj |E2) for comparing the similarity between two
environments.

Comparing the second order marginal distributions is
equivalent to comparing their corresponding graphical struc-
tures. To visualize this, consider a weighted undirected graph
where the words wi are the nodes and the weight of the
edge between wi and wj represents P (wi, wj |E1). We can
construct a similar graph for environment E2. In practice,
we do not have access to the underlying probability distribu-
tions. However we can determine the empirical distribution
using the observed co-occurrence frequencies. The WWC
matrices WE1 and WE2 are specific instances of these
probability distributions. Now the problem of determining
the similarity between the two second order marginal distri-
butions P (wi, wj |E1) and P (wi, wj |E2), is approximately
equivalent to determining the similarity between the two
corresponding graphs denoted by the WWC matrices. To



Algorithm 1 Construct WWC Matrix
Data: I : dataset containing images I1, I2...In
Result: W : The word-word co-occurrence matrix for I
for j = 1 : n do

words = ExtractWords(Ik)
foreach pair 〈w1, w2〉 in words do

if co_occur(w1, w2) then
if w1 < w2 then

W (w1, w2) = W (w1, w2) + 1;
end

end
end

end

compare the two graphs, we use the graph kernel described
in the previous section.

Specifically, we set the function f as follows:

f(v1i , v
2
i , v

1
j , v

2
j , ei, ej) =

{
min(ei, ej) if v1i = v2i ∧ v1j = v2j
0 otherwise.

(4)
Also, we set both p× and q× to be the uniform distribution,

i.e. p×(i) = 1/‖ζ×‖ (and similarly for q×). This reduces the
expression for K(G1, G2) to the sum of the entries of the
matrix Γ×. This choice is motivated by the observation that
the different images in the environment are likely to have a
different number of words and without prior information, all
document lengths are equally likely.

The final approximation is that we restrict ourselves to
only random walks containing one edge (or two vertices).
In other words, we set λ1 = 1 and λi = 0 for all i > 1.
This reduces the graph kernel in the previous section to the
proposed similarity criterion. In order to show that this is a
valid kernel, we note that the min() function is a valid kernel
(from the Histogram Intersection Kernel). The sum of kernel
functions is still a kernel. Since the proposed criterion is just
the sum of a set of min() functions, the validity follows.

C. Constructing the WWC Matrix

The algorithm is shown in Algorithm 1. Coarse words are
extracted from each image in the dataset. The explanation
of the coarseness is given in Section IV-B. Co-occurrence
counts are incremented for a pair of words 〈w1, w2〉 if the
distance between the corresponding features lie within a
certain distance of each other in the image. If a pair of words
occurs multiple times in the same image, the corresponding
co-occurrence counts are incremented multiple times.

The threshold used in the definition of co-occurrence used
here has two major purposes:
• It enforces a weak geometric consistency check, and
• ensures greater sparsity in the WWC matrix.

D. Computational Considerations

From an implementation standpoint, we note that the
matrix Γ× is extremely large, of size O(|V |2). However,
since the tf-vector for each image is generally sparse, the

WWC matrix is reasonably sparse. Consequently, Γ× is also
relatively sparse. This means that the proposed criterion
can be computed fairly efficiently in practice (since it only
depends on the number of non-zero terms in the WWC
matrices). Also, the matrix is maintained in a upper triangular
form for efficiency. However, as the size of the vocabulary
increases, the WWC matrices are likely to contain more
word pairs. In such cases, we note that the pairs of features
that have a low frequency of co-occurrence are usually less
descriptive of the environment and hence can be disregarded
from the similarity computation. Specifically, this is done by
setting entries in the WWC matrix to zero, if the correspond-
ing entries are below a threshold λ (we call this threshold
the sparsification threshold in the rest of this paper).

IV. HIERARCHICAL PLACE RECOGNITION

Our loop detection approach follows the loop detection
algorithm for single environments DBoW2 presented in [6].
For the reader’s convenience, we start by giving a brief
description of that technique.

A. Single Environment

DBoW2 uses a fixed-size visual vocabulary tree of binary
words to represent images. This is the result of a hierarchical
k-means clustering of the descriptor space, so that clusters at
deeper levels of the tree correspond with finer discretization
levels. The leaves of the tree are the vocabulary words and
are given a term frequency - inverse document frequency
(tf-idf) weight that depends on their discriminative power
(according to the training data). Images are indexed by an
inverted index that stores for each word in the vocabulary
the images that contain it, allowing fast retrieval of those
images with words in common. Finally, a direct index stores
the features of the images at any level of the vocabulary tree,
i.e. at any descriptor discretization level.

Given a query image q, a normalized similarity score ηqi
based on the Bhattacharyya coefficient is computed for each
i-th candidate match. Those that exceed a threshold α are
grouped together when they were taken at close positions,
yielding a cumulative group score Hq . The best-ranked
image of the group that maximizes Hq is selected as a loop
candidate. If this candidate is consistent with k previous
loop candidates, it is selected as a loop detection. This
test is called temporal consistency and provides robustness
to the results. In [6] a final geometrical verification based
on epipolar geometry was done before accepting a match.
However, we deactivated that functionality in our work
because it veils our analysis.

B. Hierarchical Approach

Our loop detection approach in this paper is depicted by
Figure 2. We use a single static vocabulary tree of branching
factor 10 and 6 depth levels (resulting in 106 words) trained
with 99M ORB features obtained from 108K independent
and generic images of the SUN397 dataset [25]. This ensures
a very descriptive configuration and fast access time. As
an example, we show in Table I the execution time of



Fig. 2. Proposed algorithm for Hierarchical Place Recognition.

TABLE I
MEDIAN OF EXECUTION TIMES IN NORDLANDSBANEN WITH 71534

IMAGES (MS)

Vocabulary size Insertion Detection
104 1.3 453.0
105 1.8 100.1
106 2.5 22.0

performing image matching with different vocabulary sizes
in a sequence of 71K images. The larger the vocabulary, the
more sparse its inverted index, requiring fewer comparison
when computing candidate matches. On the other hand, a
very high number of words can make them too specific, so
that similar image features lie in different words, preventing
them from matching and decreasing accuracy. The vocab-
ulary sizes we selected do not exhibit this problem, as we
show in Section V.

We assume that we are provided with a set of environments
obtained from other robots’ maps. In an offline stage, we
compute the ORB features and the the bag of words of all the
images of each environment to create its WWC matrix. Since
the size of this matrix is quadratic in the number of words,
we consider two different discretization levels for the words:
a fine level of 106 words to represent single images, and
a coarser level of 105 words for environments. Selecting a
coarse level can be done effortlessly and without demanding
another vocabulary because it only requires to pick the parent
node of the fine word in the vocabulary tree. Although the
coarseness level trades off speed and accuracy, 105 words
provide a good balance as we show in Section V.

To provide a fast environment score computation, we
encode all the WWC matrices in a high-level inverted index.
At the same time, each environment stores the bag-of-words
of its images in an environment-level inverted index. Note
that the high-level inverted index indexes entries by pairs of
words and the environment specific inverted index by single
words. All of them compose the hierarchy of inverted indices
of our approach.

During the online stage, given a query image, two bag-of-
words vectors are computed at fine and coarse levels. The
coarse vector is used to build a WWC matrix I of that single
image. The high-level inverted index is inspected then to

compute the score S(I, Ei) (equation 1) for any environment
Ei with pairs of co-occurrent words in common with I .
The environment E∗ = arg maxEi

S(I, Ei) is selected as
the most similar one. Finally, the environment-level inverted
index related to E∗ is accessed to obtain an image-to-image
loop detection. At this stage, the temporal consistency check
explained above is applied to enhance the results.

V. EXPERIMENTAL RESULTS

A. Hierarchical Place Recognition

To show the versatility of the place recognition, we used 7
datasets collected by other authors, shown by Table II. These
are long image sequences taken by mounting a camera on
some kind of vehicle (robot, car, train) taken with different
cameras and under different conditions, producing a total of
650K images of different sizes.

In each experiment, we create two subsets of images for
each dataset. One is added to the image database of the tested
loop detector and the other is used to perform queries to
obtain loop matches. Each subset is created by reading the
images of each dataset at a certain frequency f , applying a
time offset to obtain disjoint subsets. In order to ensure a fair
comparison between the methods, no geometric verification
was used in any of the experiments to verify the matches
obtained.

We performed two sets of experiments. The first experi-
ment sampled the datasets at approximately 2Hz to obtain a
total of 85,508 images, while the second experiment used
a sampling frequency of 5Hz to obtain 214,483 images.
The first experiment was used to verify the accuracy of
the system, since fewer training images were used. whereas
the second experiment was used to verify the computational
scalability of the proposed approach. We compared our
hierarchical approach with a detector baseline [6] that adds
all the images into a single common database. Table III
shows the execution time obtained on a MacBook Pro 2.7
GHz Intel Core i7 with 16 GB DDR3 memory. We used
a visual vocabulary of 106 words for performing place
recognition and a vocabulary of 105 words for building the
WWC matrices. The sparsification threshold was set to m(r)
(the mean of the non-zero elements in the row r).

In order to accommodate the results for all the datasets,
we summarize the results as follows: for each dataset, we
compute the maximum precision obtained and report the
corresponding value of recall. These results are shown in
Table IV for the case f = 2Hz. The results clearly show
that the Hierarchical Inverted Index achieves slightly lower
but comparable accuracy to the single Inverted Index in most
cases, and requiring a much lower execution time, as shown
in Table III. In addition, there are two interesting observation
we make:
• The first observation is that for the Whitmore dataset,

the Hierarchical Index actually outperforms the single
Inverted Index. This is attributed to the fact that by
selecting the correct environment, we can eliminate a
significant number of ambiguous matches.



TABLE II
DATASETS

Dataset Description Length (Km) Average speed (m/s) Image size (px×px)
New College [23] Outdoors, dynamic 2.3 1.5 512× 384
Bicocca 2009-02-25b [21] Indoors, static 0.8 0.5 640× 480
Ford Campus 2 [20] Urban, slightly dynamic 4 6.9 407× 621
Malaga 2009 Parking 6L [2] Outdoors, slightly dynamic 1.2 2.8 1024× 768
Whitmore (own) Urban, slightly dynamic - - 640× 480
St Lucia 19-08-09 08:45 [8] Urban, dynamic, JPG artifacts 17.6 12.1 640× 480
Nordlandsbanen Spring [1] Outdoors, static, JPG artifacts 729 20.4 1920× 1080

Fig. 3. Figure showing the Confusion matrix for the Environment Selec-
tion problem. The environments are {Bicocca25b, NewCollege, Whitmore,
Malaga6L, StLucia, Ford2, Nordlands}. The confusion matrix shows that
images from StLucia are often classified as Nordlands. From the images in
the first row (StLucia) and second row (Nordlands), we see that foliage in
both datasets occupy a significant portion of the features obtained, leading
to ambiguity.

TABLE III
COMPARISON OF MEAN EXECUTION TIME FOR DIFFERENT METHODS

(MS)

Images Index Type Environment Selection Query Total

85, 508
Hierarchical 7.09 10.7 17.79

Single - 24.51 24.51

214, 483
Hierarchical 6.89 37.73 44.6

Single - 66.37 66.37

• The second observation is that both the Single Inverted
Index approach and the Hierarchical Inverted Index
approach perform poorly on the StLucia dataset. Fur-
ther examination of the confusion matrix, shown in
Figure 3, reveals that some images from the StLucia
and Nordlands datasets look alike. Images from both
the datasets are also shown in Figure 3. Although this
is a challenge for the similarity criterion, the results of
our Hierarchical Inverted Index are still similar to those
of the Single Inverted Index.

TABLE IV
COMPARISON OF RECALL (R) FOR MAXIMUM VALUES OF PRECISION

(MP) FOR DIFFERENT METHODS

Single Hierarchical
Dataset MP R MP R

Bicocca25b 100 94.49 100 97.14
NewCollege 99.99 90.75 99.87 90.18
Malaga6L 100 94.48 100 90.56
Whitmore 99.49 57.6 99.62 76.32
StLucia 98.75 25.55 97.85 23.49
Ford2 100 95.77 100 91.96
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Fig. 4. PR Curves for Environment Selection for different values of the
sparsification threshold λ. A lower value of λ implies fewer elements are
discarded, leading to higher accuracy. The interesting thing to note here
is that for all the environments, setting λ = m(r) gives us the same
performance as the full matrix (i.e, when λ = 0). This implies that words
that co-occur less frequently are less informative for environment selection.
This is in contrast to place recognition where words that occur rarely are
considered more informative.

B. Environment Selection

In this subsection we discuss a few properties of the
similarity criterion. There are three major factors that affect
the discriminative ability (the ability to differentiate the
true environment from other environments) of the proposed
similarity criterion, namely the quantizing vocabulary V , the
sparsification threshold λ and the number of images used
to construct the WWC matrix. We proceed to examine each
in turn. For all the experiments in this section, we obtain
the test and training data in the same way as described in
the previous subsection. The training data belonging to a
specific environment is used to compute the corresponding
WWC matrix. Each of the test images is treated as a separate
query. We then use the similarity criterion on the test images
to determine the environment they belong to.

1) Sparsification Threshold: Throughout our experiments,
we have used λ(r) to the mean of the sum of the non-zero
entries in the row r. In other words,

λ(r) = mean(W (r, j))

≈
∑
j

W (r, j)/|W (r, :)|

= 1/|W (r, :)| (5)

Here |W (r, :)| indicates the number of non-zero elements in
the row r. Since the WWC is row normalized, sum of the
elements in each row is 1. This gives us the final expression
λ(r) = 1/|W (r, :)|. Since this is not the true mean, we rep-
resent it by m(r). We experimentally justify this choice by
comparing it with 4 other thresholds. Specifically we present
PR curves for λ(r) = {0,m(r)/2, (m(r) + max)/2,max}
in Figure 4.
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(d) NewCollege

Fig. 5. PR Curves for Environment Selection using vocabularies of different
sizes. This monotonic improvement shows that the discriminative ability of
the criterion improves with the size of the vocabulary.
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(d) Malaga6L

Fig. 6. PR Curves for Environment Selection using different sampling
rates. This sampling rate controls the number of images used to construct
the WWC matrix. Reducing the number of images used to construct the
WWC reduces the discriminative ability of the proposed criterion. However,
these curves show that environments can be identified correctly even when
we use much fewer images. This highlights a dominant underlying structure
to these environments.

The results show that choosing λ(r) = 1/|W (r, :)|gives
us the best performance in many datasets. This can be
explained by observing that at the environment level, pairs
that co-occur very rarely, hardly contribute to the similarity
score. This is in contrast to standard place recognition,
where the infrequently occurring words contain most of the
discriminative information. Another observation is that if a
pair of words co-occur too frequently, they are no longer
discriminative. This explains the reduced performance for
λ > mean.

2) Vocabulary Size : The discriminative ability of the
BoW approach improves with the size of the vocabulary.
Since the WWC matrix relies heavily on the vocabulary,
the discriminative ability also improves with vocabulary
size. This is shown for various environments in Figure 5.
However, we note that higher vocabulary sizes imply larger
WWC matrices and consequently takes longer to compute
the similarity. This offers a nice tradeoff between memory
consumed and accuracy.

3) Effect of Number of images: The number of images
used to construct the WWC directly affects the discriminative
ability of the WWC matrix. In order to verify the impact on
the PR curve, we used a subset of the total images in the
dataset. The subset was obtained by choosing images at fixed
intervals. In separate runs of the experiment, the interval size
was adjusted to obtain different number of images in the
subset. The results are shown in Figure 6. These indicate
that the higher the number of images used to construct the
WWC matrix, the better the results. However, we note that
even with as few as 1000 images per dataset, we obtain
reasonable accuracy for the environment selection problem.
This underlines the existence of a distinct dominant latent
structure to these environments and thus justifies our use of

the criterion.

VI. CONCLUSIONS

In this work we have derived a graph kernel to compare
graphs of co-occurrent image words. With this, we have
formulated a similarity criterion to measure the similitude
in appearance and geometrical spaces between environments
for place recognition for SLAM. We have also proposed
a novel hierarchical place recognition algorithm to detect
loop closures in imagery obtained from very large and
heterogeneous trajectories, adding up to more than 750Km
in length. Leveraging the presented environment similarity
criterion, we have showed that by using two nested levels
of inverted indices, we are able to discriminate between
environments to reduce the search space of image candidates.
This leads to a decrease of the required execution time for
the full place recognition without affecting the accuracy.

Aiming at a scenario where many robots or users with
mobile phones [16] can create, share and need to reuse maps,
we consider that this work is a first step to a long-term
algorithm for place creation and maintenance. To accomplish
this goal, in a future work, we will address issues such as
automatic online creation of new environments or environ-
ment fusion after successful recognition of places in different
environments.
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