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Abstract—We propose to use machine learning to dis-
cover indices from the SST field data, and to compare
their prediction performance to that of the Niño3.4 index,
on tasks related to ENSO. As a first step in this direction,
this work focuses on predicting the time-series of monthly
temperature anomalies in Texas, from time series for the
whole ocean SST field, ending 6 months prior.

I. INTRODUCTION

Understanding the El Niño–Southern Oscillation
(ENSO) is crucial for predictions of regional and sea-
sonal conditions, as it tends to have strong (positive or
negative) correlation with a variety of weather conditions
and extreme events throughout the globe. However there
is currently significant room for improvement in predict-
ing even this extremely well-studied oscillation with such
high global impact. For example, most statistical and
climatological models yielded questionable predictions
or else erred significantly in predicting an El Niño event
for 2014; their predictions were off by several months.
The 2015 event is still ongoing, with some predictions
that it could be one of the biggest of the century. Better
tools to predict such phenomena are critical for seasonal
and regional climate prediction, and would thus address
grand challenges in the study of climate change [?].

The index currently most widely-used to predict
ENSO, known as Niño3.4, is the mean sea surface tem-
perature (SST) anomaly in a fixed region of the ocean.
Many of the currently used climate indices, including
Niño3.4, were originally defined by human experts, as
opposed to having been learned from the data in an
automated fashion. Data mining techniques have shown
recent success in discovering climate patterns [?]. We
propose to use machine learning to discover indices from
the SST field data, and to compare their seasonal predic-
tion performance to that of the Niño3.4 index, on tasks
related to ENSO. In this work we focus on predicting the
time-series of monthly temperature anomalies in Texas,
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from time series for the whole ocean SST field, ending
several months prior. We focus on predicting seasonal-
mean temperature in Texas because the drought/heat
wave there in 2011 raised critical questions about the
role of ocean temperatures and the extent to which such
events can be predicted in the future [?].

To understand which kind of patterns (“features” in
the language of machine learning) in the global ocean
SST field are important for capturing its relation to
Texas temperature, we explore the effect of various
unsupervised feature learning techniques—linear and
nonlinear—applied to the ocean SST field followed by
a unified regression step, on the prediction performance
of Texas mean temperature.

II. FRAMEWORK

Specifically, our approach has two stages:
1) Unsupervised feature learning: Given tempera-

ture anomalies over the ocean [?] we use un-
supervised learning to generate a set of task-
independent features. The methods we consider are
k-Means clustering, Singular Value Decomposi-
tion (SVD/EOF), and Nonlinear Laplacian Spectral
Analysis (NLSA) [?]. 1 The former two are com-
monly used for feature extraction that essentially
factorize the data matrix into low-rank parts and
thus both linear. The latter is a nonlinear method,
which exploits the prior knowledge that spatial
climate patterns at two consecutive time stamps
should be “close” to each other. Based on this
insight, it constructs a nonlinear embedding of the
original data and performs SVD in the embedded
spatial-temporal space. It has been empirically
demonstrated to find low-frequency (rare) climate
patterns, which are typically not captured by tra-
ditional methods such as SVD [?], [?].

2) Regression: With the learned features, we apply
regularized least squares regression to learn a pre-
dictive model for the Texas temperature anomalies.

1These all outperformed hierarchical agglomerative clustering.
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Fig. 1: Normalized RMSE (left) and absolute value of the
correlation (right) for a 6 month lookahead task (with black
lines for the Nino3.4 index). NLSA+LASSO was observed to
have the best prediction error among all the methods tested.

The methods we consider are Ridge (L2-norm reg-
ularization) and LASSO (L1-norm regularization).

III. EXPERIMENTAL RESULTS

We used NOAA’s Merged Land-Ocean Surface Tem-
perature Analysis (MLOST) V3.5.4 dataset [?] for
the monthly temperature anomalies. All methods were
trained with data for the period 1964-2003. Prediction
performance was then determined by computing predic-
tion errors over 2004-2013. Performance was evaluated
on two metrics, the Normalized RSME, and the correla-
tion coefficient (between a method’s lagged predictions
and the Texas time-series). The Normalized RMSE can
be computed from a prediction model’s RMSE, and the
standard deviation of the observation sequence, σy, as,
NRMSE = 1− RMSE

σy
. We observed that Ridge regression

performed worse than LASSO, when paired with each
feature learning technique. We also tried linear regres-
sion without regularization, which fared worse. Both of
these findings suggest the need for sparse solutions for
this task.

The NRMSE error, and the correlation obtained by
predicting with the Niño3.4 index for the test period
(with a 6 month lag, corresponding to the test framework
for the learning methods) were -0.36 and -0.16, respec-
tively. Fig. 1 shows the results obtained using machine
learning as the number of features varied. This shows
that NLSA performs better than Niño3.4 for most feature
sizes, which may be explained by its ability to capture
nonlinear patterns that are not captured by linear methods
due to their low frequency (rare) nature. k-means and
SVD outperform Niño3.4 when the number of features
is small (around 10).

Although dimension reduction plus LASSO perform
better than Niño3.4 on these metrics, the predicted time
series is close to the mean of the observed temperature
anomalies (see Fig. 2). Thus the predictions do not
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Fig. 2: The time series predicted by NLSA+LASSO, is close
to the mean of the observed temperature anomalies. The Niño4
and Niño3.4 indices had significantly higher prediction errors.

match the large spikes in the observation time-series,
corresponding to extreme weather. While the Niño3.4
and 4 indices capture some spikes, they also err much
more significantly on others.

IV. FUTURE DIRECTIONS

To further test our conjecture that prediction models
learned via machine learning can outperform existing
ENSO indices, we plan to study other supervised regres-
sion tasks associated with ENSO, both individually, and
simultaneously as a multi-task problem. We also plan to
explore different notions of error, in order to quantify
prediction of extremes. Additionally, identifying regions
in the SST field that have significant predictive power
with respect to the Texas temperatures is a subject of
ongoing research.
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