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Abstract—The Nyström method is a matrix approximation
technique that has shown great promise in speeding up spectral
clustering. However, when the input matrix is sparse, we show
that the traditional Nyström method requires a prohibitively
large number of samples to obtain a good approximation. We
propose a novel sampling approach to select the landmark points
used to compute the Nyström approximation. We show that the
proposed sampling approach obeys the same error bound as
in Bouneffouf and Birol (2015). To control sample complexity,
we propose a selective densification step based on breadth-first
traversal. We show that the proposed densification does not
change the optimal clustering. Results on real world datasets
show that by combining the proposed sampling and densification
schemes, we can obtain better accuracy compared to other
techniques used for the Nyström method while using significantly
fewer samples.

I. INTRODUCTION

Spectral clustering is a popular technique for clustering [3]

based on the eigenvectors of the normalized graph Lapla-

cian. Low rank approximations are used to scale up these

methods by simplifying the computation of eigenvectors and

eigenvalues. Several iterative methods to compute the low

rank approximation like [4], [5] involve the use of the entire

matrix making them infeasible for large matrices. An alternate

approach, the Nyström approximation, has been a standard

tool for low rank approximation of symmetric positive semi-

definite (SPSD) matrices since its introduction in [6]. In

cases where the input matrix has low rank, the Nyström

approximation is known to return an exact approximation as

shown in [7].

Given an input matrix A, the Nyström method chooses a

subset of l columns C ∈ Rn×l, and reconstructs the complete

kernel matrix by Â ≈ CW+
k CT , where W is the principal sub-

matrix of A induced by the selected columns and W+
k is the

pseudo-inverse of its rank-k approximation. Various methods

have been proposed in the literature to construct the matrices

C and W . These can be broadly divided into three categories:

projection based, sampling based and clustering based.

Projection based methods use a data-independent projection

matrix to represent the entries of the matrix as points in lower

dimensional space. In other words, the matrices C and W are

given by C = AS and W = S′AS respectively, where S is

the projection matrix. Examples of projection matrices used

include Gaussian projections, Subsampled Random Fourier

Transforms as described in [8].

There has been recent work in improving the efficiency of

approximation in the case of spectral clustering by applying

clustering-based techniques to columns of normalized graph

Laplacians. [9] and [10] used the k-means algorithm (KS), to

select k centroids as landmark points. These landmark points

are used to compute the Nyström approximation. However,

the results in [11] show that both methods perform poorly for

non-convex clusters.

The incremental sampling (IS) algorithm proposed in [12],

first randomly samples two points from a dataset, to compute a

similarity matrix between the sampled points and the remain-

ing points. The algorithm picks the point with the smallest

variance, and then iteratively repeats the process until a desired

number of landmarks is reached. However, as shown in [13], in

higher dimensions the variance of the Euclidean distance tends

to zero. In such cases IS may pick inappropriate landmark

points and perform similarly to uniform sampling. In order

to address this behavior of points in high dimensional spaces,

[13] proposed minimum similarity sampling (SS). However, it

is outperformed by IS on low dimensional data. The approach

proposed in this paper relies on the norms of the columns

as opposed to the distance between them. Hence it performs

equally well for both low and high dimensional data.

[11] introduced Minimum Sum of Squared Similarities

(MSSS), which approximately maximizes the determinant

of the reduced similarity matrix that represents the mutual

similarities between sampled data points. However all these

methods can become computationally expensive as the size of

the matrix grows. In contrast to these methods, the proposed

algorithm relies on the sparsity of the input matrix to return

a good approximation efficiently even in high dimensional

spaces.

Both projection based approaches and clustering based

approaches require the computation of the entire matrix. For

sampling based methods, the matrices C and W are given

by C = AS and W = S′AS respectively, where S is

the sampling matrix, i.e. C is a subset of the columns of

A and W is its induced principal sub-matrix. Hence, the

entire input matrix does not need to be computed; a sub-

matrix C suffices. Examples include uniform sampling [14],

column norm sampling [15], leverage score sampling [8].

Since W is constructed without using a data-independent

projection matrix, sampling based approaches offer a better

generalization bound compared to projection based approaches



when the input matrix has a large eigen gap [16].

The contributions of this paper are,

1. When the input matrix is sparse, we show that techniques

that rely on the distances between columns fail to perform

well. Additionally, the Nyström method based on uniform

sampling requires a prohibitively large number of samples to

obtain a good approximation.

2. We propose a novel sampling technique to select the initial

landmark points and show that for sparse matrices, it has an

error bound that is equal to MSSS [11] and requires far fewer

computations.

3. To control sample complexity, we propose a technique for

selective densification based on breadth first traversal.

4. We show that the proposed densification does not change

the optimal clustering when the input matrix is block diagonal.

II. OBSERVATIONS FOR SPARSE MATRICES

In this section we outline two major issues that are faced

by sampling based approaches when the matrix is extremely

sparse. First we show that distances between columns are

not useful for selecting landmark points when the matrix is

sparse. Second, we show that the expected number of samples

required for uniform sampling can be O(n) when the matrix

is sparse. Let the average degree of a node be davg and the

maximum degree of any node be dmax. For sparse matrices,

we assume that d2max is extremely small compared to the

number of vertices n.

A. Distances Between Sparse Columns

Observation 1. Suppose we are given a sparse, symmetric

positive semi definite matrix A of size n× n. For any pair of

columns of A, say x, y, with probability ≥ 1− d2max/n,

‖x− y‖2 = ‖x‖2 + ‖y‖2

Proof. For a column x, we call column y favorable if there

exists a row i such that xi 6= 0 and yi 6= 0. ‖x − y‖2 6=
‖x‖2 + ‖y‖2 only if y is favorable with respect to x. For y to

be favorable with respect to x, x and y must have at least one

common neighbor. We make two observations: x has at most

dmax neighbors and each neighbor can have at most dmax

neighbors. Thus, there are at most d2max ways to choose a

favorable y. This implies,

Pr[ choosing a favorable y] ≤ d2max/n

Pr[‖x− y‖2 6= ‖x‖2 + ‖y‖2] ≤ d2max/n

Since Pr
[

‖x− y‖2 = ‖x‖2 + ‖y‖2
]

= 1 − Pr[‖x − y‖2 6=
‖x‖2+‖y‖2], the statement in Observation 1 now follows.

Consequence: In [9], the k-means algorithm is used to

select the landmark points used to compute the Nyström

approximation. The k-means algorithm has three major steps:

initialization, cluster assignment and updating the center. In

the initialization step, candidate centers are chosen by sam-

pling k columns uniformly at random. Among these centers

{c1, c2..., ck}, let cmin be the center with the smallest column

norm.

In the cluster assignment step, all the columns are assigned

to their closest center. For a column x, let its closest center

be represented as cx, i.e.

cx = argmin
c
‖x− c‖2

From Observation 1, this can be rewritten as,

cx = argmin
c
‖x‖2 + ‖c‖2

This shows, points will be assigned to cmin with high

probability. This leads to bad landmarks being chosen, re-

sulting in a poor approximation. Note, other techniques are

available to select the initial candidate centers. However, these

techniques are computationally intensive. Thus the k-means

based landmark selection is not useful when the matrix is

sparse.

B. Sample Complexity

Let C be the sub-matrix created by sampling l columns of

the input matrix A. A node in the graph is said to be covered
if its corresponding row in C has norm greater than zero. All

nodes that are not covered are mapped to the origin. This

results in a bad clustering and has to be avoided. Consider a

matrix A with n rows and columns.

Observation 2. When uniform sampling is used to select the

landmark points, to ensure any node x is covered, the number

of samples l, satisfies,

E[l] ≥ n/(dmax + 1)

Proof. x is covered only if x or one of its neighbors is sam-

pled. Since there are at most dmax neighbors, the probability

of choosing x or one of its neighbors is at most (dmax+1)/n.

Thus the number of samples needed l is a geometric random

variable with the probability of success being (dmax + 1)/n.

Thus we have E[l] ≥ n/(dmax + 1) which is significantly

large if dmax ≪ n.

In this paper, we address this issue by selectively densifying

the sampled matrix C as described in the next section. Selec-

tive densification increases both davg and dmax. This enables

sampling based approaches to cover the vertices of the graph

with a smaller number of samples. Since the computational

complexity of the Nyström approach scales cubically with the

number of samples, using fewer samples results in a significant

speedup for large datasets.

III. PROPOSED APPROACH

The proposed approach is outlined in Algorithm 1. It can

be divided into three phases. Let 0 ≤ α ≤ 1 be user-specified

constant. In the first phase, we sample a subset of αl samples

as follows: choose a set of αl initial columns uniformly at

random. Additional columns are sampled uniformly at random

and only the αl columns with the highest column norm are

retained. Let us call this subset St and the associated sub-

matrix C (i.e. C = A(:, St) ). In this paper, we use an



iterative approach to selecting the columns, but it can be easily

parallelized to obtain further improvement in efficiency.

In the second phase, C is densified as follows: For each

column c ∈ St, at step i, the function can be reached()
returns the set of nodes that can be reached from c in i
steps. This is represented in the Algorithm as nn and the

predecessor for each node in nn is returned in prev. For each

node p ∈ nn (let q be its corresponding node in prev) and

column s, if C(p, s) = 0, the new densified value is given as,

C(p, s) = C(q, s) ∗A(q, p).

Finally, in the third phase, a pass is made over all the

columns to cover the columns that are not covered even after

the densification step.

Once the columns have been selected, the eigenvectors are

approximated using the approach outlined in [2]. We use the

procedure described in [2] due to its ability to handle matrices

that are not positive semi-definite. In case the input matrix

is positive semi-definite, we can use the simpler procedure

described in [1].

Algorithm 1 Proposed Modified Spectral Clustering

Input : Matrix A, the required number of clusters k, number

of samples l, fraction of points α, maximum number of

densification steps max hops
Output : Cluster assignment C
Procedure:

##Select initial landmark points

S0 ← Sample αl columns uniformly at random

q ← argminp∈S0
deg(p)

t← 0
while t < (1− α)l do

Sample a row ct uniformly at random

if ‖ct‖ > ‖q‖ then

St ← St−1 − {q} ∪ {ct}
q ← argminp∈St

‖p‖
end if

t← t+ 1
end while

##Densify selected columns

C ← A(St, :)
for each s ∈ St do

for i < max hops do

[nn, prev]← can be reached(s, i)
C(nn, s)← C(prev, s) ∗A(prev, nn)

end for

end for

##Compute Approximate eigenvectors

W ← C(St, :)
DW ← degree(W )
D ← degree(C)
[U,Λ]← eig(W )

Q← D−1/2CD
−1/2
W UΛ+

C ← discretize(Q)

IV. ANALYSIS

A. Justification for the initial sampling scheme

We briefly outline the MSSS algorithm to facilitate com-

parison with the proposed approach. The MSSS algorithm

proceeds iteratively by selecting the column that has minimum

similarity with the centers chosen so far. In other words, at

each iteration, the method chooses the column that is farthest

from the landmark points chosen so far.

At the end of m iterations, the proposed approach retains

t = αl columns which have the highest column norms.

Lemma 1. Suppose, at iteration m, columns x1, x2...xt have

been chosen so far. Suppose, the similarity between columns is

given by sim(x, y) = e−0.5∗‖x−y‖2

. In the sparse case, with

probability ≥ 1− d2max/n

argmax
y

‖y‖2 = argmin
y

∑

sim2(y, xi)

In other words, selecting the column with the highest column

norm is equivalent to selecting the column with the lowest

similarity with all the columns chosen so far.

Proof. Since sim(x, y) = e−0.5‖x−y‖2

, we can apply Obser-

vation 1 to the exponent of the expression and state that, with

probability ≥ 1− d2max/n,

sim(x, y) = e−0.5(‖x‖2+‖y‖2) = e−0.5‖x‖2

e−0.5‖y‖2

Thus,
∑

sim2(y, xi) =
∑

(e−0.5‖y−xi‖
2

)2

=
∑

(e−0.5‖y‖2

e−0.5‖xi‖
2

)2

= (e−0.5‖y‖2

)2
∑

(e−0.5‖xi‖
2

)2

Hence,

argmin
y

∑

sim2(y, xi) = argmin
y

e−0.5‖y‖2

= argmax
y

‖y‖2

At iteration m, the proposed method retains t columns that

have the maximum column norms over the set of columns

sampled till iteration m. Thus we see that at each iteration,

with high probability, the proposed sampling step selects the

column that has the least similarity to the columns chosen so

far. Using the following theorem from [11] we can also say

this increases the determinant at each step.

Theorem 1. [11] Suppose columns X = {x1, x2...xm} have

been chosen so far. Let AX be the Nyström approximation

obtained by selecting the columns of X . Then for any pair of

columns p, q, if,
∑

sim2(p, xi) ≤
∑

sim2(q, xi)

then with high probability,

det(AX∪{p}) ≥ det(AX∪{q})



This result can be used to prove that the Frobenius norm

error of proposed sampling scheme has the same upper bound

as MSSS. The upper bound on the Frobenius norm error is

given in the following theorem.

Theorem 2. [11] Suppose columns X = {x1, x2...xl} have

been chosen so far. Let Ak be the optimal rank-k approxima-

tion and Âk be the rank-k Nyström approximation obtained

by using the proposed method.

‖A−Âk‖ ≤ ‖A−Ak‖+(l+1)
n
∑

i=l+1

λi+γ

(

1 +

√

θdS
Amax

)1/2

Here dS = maxij(Aii + 2AjjAij), . For more details on the

error bound, please refer to Theorem 2 in [11].

If the error bounds are similar, why should the proposed

sampling procedure be used? The proposed sampling scheme

eliminates the need to compare a candidate column with all

columns chosen so far. This improves efficiency especially

when a large number of columns need to be sampled. It also

allows the selection of columns in parallel making it easier

to scale to larger datasets while providing the same level of

accuracy.

B. Why Matrix norms are insufficient for spectral clustering

The Nyström approximation has been extensively studied

with respect to various matrix error norms, such as the Frobe-

nius norm, trace norm and the spectral norm. In this paper we

show that approximation of these norms is not sufficient for

producing a good clustering. For simplicity, we focus on the

trace norm error. However the examples can be extended to

any matrix norm.

1) Not Sufficient: Here we provide an approach to construct

two matrices that are extremely similar in terms of their trace

norms, but have a significantly different norm cut objective.

We begin by describing the norm cuts objective. Suppose, we

are given a graph G = (V,A), which is made up of a set of

n vertices V . The affinity matrix A is n × n whose entries

represent the similarity between vertices. If V1, V2 are subsets

of V , let links(V1, V2) =
∑

i∈V1,j∈V2
Aij .

Furthermore, let degree(Vi) = links(Vi, V ). The graph

partitioning problem seeks to partition the graph into k disjoint

clusters V1, ..., Vk. For a possible clustering {V1..Vk}, the

norm cuts objective is described as,

norm cut(G, {V1..Vk}) =
k
∑

i=1

links(Vi, V \Vi)

degree(Vi)

Also, let norm cut(A, k) =
minV1,V2..Vk

norm cut(G, {V1, ...Vk}).
In order to show that a good approximation with respect to

the trace norm error is not necessarily a good approximation

with respect to the norm cuts ratio, we show that for any

value of ǫ > 0, there exists n, k, A and B such that, A and B
both represent graphs with n vertices, such that ‖A − B‖ ≤

(1+ ǫ)‖A‖1 and norm cut(A, k) = O(k)∗norm cut(B, k).
Note, that the maximum value of norm cut(A, k) is k.

Let A and B be the affinity matrices for undirected,

unweighted graphs with n vertices and k and k − 1 equal

sized components respectively. Further, we assume that each

component is a clique. It can be shown that the normalized

symmetric laplacian of A (denoted by L(A)) has eigenvalues

n/(n− k) with multiplicity n− k and 0 with multiplicity k.

Similarly, L(B) has eigenvalues n/(n−k+1) with multiplicity

n− k + 1 and 0 with multiplicity k − 1. More generally, we

can state that

Lemma 2. [17] Let A, D be the affinity and degree matrix

of a graph, with n vertices and k equal sized components,

Then the eigenvalues of the normalized symmetric laplacian

L(A) = I − D−0.5AD−0.5 are n/(n − k) with multiplicity

n− k and 0 with multiplicity k.

We can use Lemma 2 to compare the trace norm of the

difference of the two Laplacians, L(A) and L(B), as follows,

‖L(A)− L(B)‖21 =
n−k
∑

i=1

|λi(A)− λi(B)|

=
n−k
∑

i=1

(

n

n− k
−

n

n− k′

)

+
n

n− k′

= (n− k)

[

n

n− k
−

n

n− k′

]

+
n

n− k′

= (n− k)

[

n

(n− k)(n− k′)

]

+
n

n− k′

=
2n

n− k + 1

where, k′ = k − 1. Given a value of ǫ, we can choose

appropriate values of n, k such that ‖L(A) − L(B)‖21 ≤
(1+ǫ)‖L(A)‖21. Now we examine the norm cuts ratio when we

try to partition these graphs into exactly k clusters. It is easy to

see that the norm cuts(A) = 0, since the graph has exactly

k components. However for B, one of the k − 1 components

will have to be split into two equal parts to minimize the norm

cuts ratio. This results in a cut that involves n
k−1 (

n
k−1 + 1)/2

edges. Thus the norm cuts ratio for B is given as,

norm cut(B) = k −

(

n(n+ 2k − 2)/(k + 1)2
)

n(n+ k − 1)/2(k + 1)2

= k −
n+ 2k − 2

4(n+ k − 1)

The second term reduces to a constant for a sufficiently large

value of n, resulting in a norm cuts ratio of O(k).
2) Not Necessary: To show that preserving matrix norms

is not necessary for an approximation to be good with respect

to the norm cuts objective, we consider the case of a block

diagonal matrix A with k blocks. Let L be the corresponding

normalized Laplacian. We are interested in the eigenvectors

of L, which are the same as the eigenvectors of L2, L3, etc.

However ‖L− Li‖1 can be arbitrarily high.



C. Justification for the densification step

Now we proceed to provide approximation guarantees for

the proposed densification scheme with respect to the norm

cuts objective. Specifically, we state that

Lemma 3. If the affinity matrix is block diagonal, the clus-

tering induced by the affinity matrix does not change after

densification.

Proof. We use the connection to the weighted kernel k-means

objective shown in [18] which showed that spectral clustering

using the norm cuts objective is equivalent to weighted kernel

k-means. Specifically, given an affinity matrix A and its asso-

ciated degree matrix D, number of clusters k, minimizing the

norm cuts objective was shown to be equivalent to weighted

kernel k-means problem with kernel matrix K = D−1AD−1

and weight matrix W = D. Thus,

wj = dj

is the weighted degree of vertex j and

Kij = Aij/(di ∗ dj)

Suppose mc is the center of cluster πc. They show that the

distance of any point to the center of cluster πc is given as

‖φ(ai)−mc‖
2 = Kii − 2

∑

aj∈πc

wjKij

∑

aj∈πc

wj
+

∑

aj ,al∈πc

wjwlKjl

(
∑

aj∈πc

wj)2

Plugging these values in the expression for ‖φ(ai)−mc‖
2,

we get,

‖φ(ai)−mc‖
2 = Kii − 2

∑

aj∈πc

Aij

di
∑

aj∈πc

dj
+

∑

aj ,al∈πc

Ajl

(
∑

aj∈πc

dj)2

Since A is block diagonal, no entries of column i are

modified except those corresponding to vertices in π1. Thus

we have,
∑

aj∈πc

Aij = di

and
∑

aj ,al∈πc

Ajl =
∑

aj∈πc

dj

Thus we get,

‖φ(ai)−mc‖
2 = Kii −

1
∑

aj∈πc

dj

Suppose column i belonging to cluster πc is densified. Since

ai belongs to πc, ‖φ(ai)−mc‖
2 is smaller than the distance to

any other center. Let the new affinity matrix after densification

be A′. The distance of the point ai from its center is given

by,

‖φ′(ai)−mc‖
2 = K ′

ii −
1

∑

aj∈πc

d′j

‖φ′(ai)−mc‖
2 − ‖φ(ai)−mc‖

2

= K ′
ii −

1
∑

aj∈πc

d′j
−Kii +

1
∑

aj∈πc

dj

≤ −
1

∑

aj∈πc

d′j
+

1
∑

aj∈πc

dj
(1)

≤ −
1

∑

aj∈πc

dj
+

1
∑

aj∈πc

dj
(2)

≤ 0

Equation 1 follows from the fact that Kii ≥ K ′
ii. Equation 2

follows from the observation that
∑

aj∈πc

d′j ≥
∑

aj∈πc

dj . This

holds because, the densification only adds positive entries to

A.

Thus we see that after densification, the point moves

closer to its own center, while its distance to other clusters

remains unchanged. This ensures that the clustering remains

unchanged.

V. EXPERIMENTAL RESULTS

A. Matrix Norm Errors

For the sake of completeness, we present the errors with

respect to various matrix norms. For all our experiments, we

used the experimental framework in [8]. The following errors

were used: ‖A‖2 = ‖Diag(Σ)‖∞ denotes the spectral norm

of A; ‖A‖F = ‖Diag(Σ)‖2 denotes the Frobenius norm of

A; ‖A‖∗ = ‖Diag(Σ)‖1 is the trace norm of A.

The HEP, GR datasets were obtained from [19]. The datasets

are extremely sparse in terms of their non-zero entries. In

addition, it has been noted that their spectra decays slowly.

We restrict the rank of the Laplacian for each dataset to 20. In

other words, the low-rank approximation is ’filtered’ through

a space of rank 20.

Figure 1 shows a comparison between the various matrix

norm errors, for the proposed algorithm (called “modified”)

and Nyström using uniform sampling (unif), Subsampled

Random Fourier Transforms (srft) and Gaussian projections

(gauss). The result shows that the proposed method yields

a better approximation than srft and gauss for all the errors

considered. Even though uniform sampling has lower matrix

norm error compared to the other methods, it is important to

note that a significantly large number of rows and columns in

the resulting approximation had norm zero. This is shown in

Figure 3. In contrast, due to the use of the densification and

clean up steps, the proposed approach significantly reduces the

number of uncovered columns.

Figure 2 shows a comparison of the computation time for

the various methods. This shows that as the number of samples

being considered increases, the proposed method requires

significantly lower time compared to Nyström with srft and

gauss making it better suited for large datasets.
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Fig. 1: Comparison of errors for proposed algorithm (mod-

ified), Nyström with uniform sampling (unif), Subsampled

Random Fourier Transform (srft), Gaussian Projections (gaus-

sians) for different datasets. We restrict the rank of these

datasets to 20.

Columns Sampled (%)

5 10 15 20 25

T
im

e 
(s

)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

modified
srft
gaussian

(a) GR

Columns Sampled (%)

5 10 15 20 25

T
im

e 
(s

)

0

1

2

3

4

5

6

7

8

modified
srft
gaussian

(b) HEP

Fig. 2: Comparison of running time: Modified Nyström (mod-

ified) v/s Nyström with Subsampled Random Fourier Trans-

form (srft), Gaussian Projections (gauss) for different datasets.

We restrict the rank of these datasets to 20. The plots show

that the proposed method is computationally better than both

gauss and srft.
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Fig. 3: Comparison of columns with norm zero: Modified

Nyström (modified) v/s Nyström with Subsampled Random

Fourier Transform (srft), Gaussian Projections (gauss) for

different datasets. The plots show that the proposed method

covers all the columns with significantly fewer samples. In

contrast, uniform sampling fails to cover all the columns even

after sampling 20% of the columns.

Name Instances Attributes Classes

Aggregation (Agg) 788 2 7
D31 3100 2 31

Flame (Fla) 240 2 2
A.K Jain‘s toy problem (AK) 373 2 2

TABLE I: The synthetic datasets used in our experiments.

B. Spectral Clustering

1) Synthetic Data: We compared the performance of the

proposed approach to the results of approaches described in

[18] and [20]. Both of these methods use the entire affinity

matrix and do not perform any sampling. We evaluated the

norm cuts ratio and the computation time on six commonly

used synthetic datasets [11], described in Table I, and repeated

our evaluations 10 times. The proposed approach sampled 30%

of the points. We measured the clustering quality of each

algorithm using the average accuracy across different datasets.

The results are shown in Figure 4. The proposed approach,

the weighted kernel k-means approach in [18] and the spectral

method in [20] are denoted in Figure 4 as “proposed”, “kulis”,

“shi” respectively. For all the datasets, the proposed approach

results in comparable accuracy while resulting in a significant

computational speedup.

2) Image Segmentation: One of the most popular appli-

cations of spectral clustering is image segmentation. In this

section, we describe results obtained on an image segmentation

benchmark [20]. The affinity matrix and the final discretization

were computed using the approach of [20]. Since we had

access to the function that was used to generate the affinity

matrix, we used a simpler densification step. Namely,

Cij = similarity(i, j) if j = argmaxp similarity(i, p)

= 0 otherwise

The final segmentation was refined using the connected
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Fig. 4: The first and second rows show the clustering obtained by [18] and the proposed approach respectively on several toy

problems. The third and fourth rows show the norm cuts ratio and the time taken for each dataset. It can be seen that the

proposed approach yields very similar results while taking comparable amount of time.



% samples

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

N
o

rm
 C

u
ts

 R
at

io

0

5

10

15

20

25

30

35

40

proposed
kulis
shi
nys

(a) 129600 nodes

% samples

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

T
im

e(
s)

0

10

20

30

40

50

60

proposed
kulis
shi
nys

(b) 129600 nodes

% samples

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

N
o

rm
 C

u
ts

 R
at

io

0

5

10

15

20

25

30

35

40

45

proposed
kulis
shi
nys

(c) 230400 nodes

% samples

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

T
im

e(
s)

0

20

40

60

80

100

120

proposed
kulis
shi
nys

(d) 230400 nodes

Fig. 5: Figures (a) and (c) show the norm cuts ratio, whereas

(b), (d) show the time taken by different methods. The

proposed method outperforms Nyström with uniform sampling

(nys) in terms of norm cuts ratio while taking a similar amount

of time. The baseline methods shi [20] and kulis [18] use the

entire affinity matrix. Thus they offer lower norm cuts ratio,

and have a significantly higher computation time.

components algorithm in [21]. The proposed approach is

compared against the approaches in [20] (shi) and [18] (kulis).

Experimental results in Figure 5 show that the proposed

approach obtains the same accuracy as the Nyström approxi-

mation with uniform sampling, while using significantly fewer

samples.

VI. CONCLUSION

When the input matrix is sparse, we showed that the tradi-

tional Nyström method requires a prohibitively large number

of samples to obtain a good approximation. To control sample

complexity, we propose a selective densification step based on

breadth first traversal to ensure all nodes are covered. We show

that the proposed densification does not change the optimal

clustering when the input matrix is block diagonal. Results on

real world datasets show that the proposed method outperforms

other techniques used for the Nyström approximation.
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