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Abstract—This paper presents two approaches to combine
two popular mapping strategies, namely Particle Filters and
Information Filters. The first method describes how the Particle
Filter can be incorporated into the Information Filter framework
by building local submaps using the Particle Filter and combining
them using a Information Filter to obtain a global map. Using the
Particle Filter locally reduces the linearization errors and is useful
in handling ambiguous data associations, while the Information
Filter keeps track of the uncertainty over long periods of time,
thereby avoiding FastSLAM’s tendency to become overconfident.
The second method shows how the Information Filter can be
used in the Particle Filter framework as a simple means of
remembering the filter’s uncertainty. This can then be used to
repopulate particles while closing loops. This not only handles
non linearities but is also robust for loop closing because,
unlike the Particle Filter, the Information Filter does not exhibit
forgetfulness of the trajectory’s past.

Index Terms—SLAM, Information Filter, Particle Filter

I. INTRODUCTION

The idea behind SLAM is to estimate the position of the

robot and the positions of the landmarks, given noisy control

and measurement data. In other words, the aim is to estimate

the distribution given by,

p(x0:t, m|z1:t, u1:t) (1)

Here, xt is the state of the robot, zt is the measurement, ut is

the control action performed at time t respectively. m denotes

the map. This version of the SLAM problem is known as the

full SLAM problem since we estimate both the map and the

entire robot trajectory. In the online SLAM problem we only

estimate the current pose of the robot instead of the entire

trajectory. This is given as,

p(xt, m|z1:t, u1:t) (2)

The complete list of approaches to address this widely studied

problem is beyond the scope of this paper, but the popular

approaches can be roughly divided into 3 general categories.

The first set of approaches are based on the Extended Kalman

Filter Framework. These approaches generally, linearize the

motion and measurement models and use this in a Kalman

Filter framework to estimate the robot’s current position and

the map simultaneously. Despite its theoretical elegance, these

methods have 3 major problems, namely, divergence due to

linearization errors, inability to recover from errors in data

association and a measurement update step of complexity

O(n2). Here n is the number of landmarks in the map.

Needless to say, this becomes expensive when the map grows

large.

The second category of methods have been collectively

described as GraphSLAM in [1]. They are offline methods

that accumulate both control and measurement information

into a graph, without resolving it into an estimate of the robot’s

position or the map. The robot’s trajectory and the map may be

obtained through an additional inference step. Thus they can be

seen as the solution to the full SLAM problem, instead of the

online SLAM problem that is solved by the EKF framework.

The posterior being estimated is factorized as:

p(x0:t, m|z1:t, u1:t) = ηp(x0)∏

t

p(xt|xt−1, ut)p(zt|xt, m)

Examples of this approach are [7], [5], [1]. The creation of

the graph can be seen as using the Information Filter as

described in [1].The advantages of this approach include, the

ability to undo data misassociations, linearizing multiple times

and consequently ability to produce better maps of larger

orders of magnitude, than can be handled by EKF and its

variants. Disadvantages are, size of the graph grows linearly

with time and the retrieval of the path and the map requires an

additional inference step. Regardless of the nature of the graph

maintained, this step is computationally, expensive enough to

prohibit regular inference. Methods like SEIF based SLAM

[1], attempt to solve the online SLAM problem using the

Information Filter, their pros and cons are given in [8].

The third category of approaches treats the SLAM problem

as a Markov Chain Monte Carlo process. It relies on the impor-

tant observation that the landmark poses are independent given

the robot’s trajectory. This leads to an elegant refactorization of

the posterior, which reduces the complexity of both the mea-

surement and prediction updates. The basic idea is to represent

the belief at every step by a weighted set of samples instead

of defining it over the entire map. The prediction update then

produces hypotheses for the robot pose by sampling based on

the prediction model. These hyotheses are weighted by using

the measurement model and the final posterior is obtained

by resampling based on these weights. the advantages of this

approach are, it is faster and it can handle nonlinearities better,

since no linearization is done before resampling. However, this
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approach is susceptible to sample impoverishment, where a

majority of the trajectories are weeded out due to resampling

and only a few distinct trajectories are retained. This causes

problems when the environment contains large loops.

Thus it is evident that no single category has a failproof

answer to the SLAM problem. Each of them come with their

own inherent advantages and disadvantages. The natural step to

take next, would be to see if a combination of these approaches

results in methods that ameliorate their individual weaknesses.

One such hybrid approach is Hybrid SLAM [3], that proposes

a combination of a Particle Filter based front end and an EKF

based back end. The resulting method does not suffer from

sample impoverishment that plagues Particle Filters and also

fairly resistant to linearization errors (especially in cluttered

environments) that plagues EKF based approaches. However,

everytime the local submap generated by the Particle Filter

front end is merged into the global map, hard data association

decisions must be taken that cannot be undone. This restricts

the size of the map that can be acquired.

The next section describes a method to compare the severity

of the sample impoverishment problem for different Particle

Filtering methods. We then propose that the Particle Filter and

the Information filter can be combined in two ways. The first

method is to use a Particle Filter to build local submaps and

finally obtain the global map by fusing these local submaps

using an Information Filter. This is described in detail in

Section 3. The second method is to improve the sampling

density of a Particle Filter by sampling from an Information

Filter based likelihood function. This is described in Section

4.

II. FORGETFULNESS IN FASTSLAM

This section aims to take a look at the sample impov-

erishment problem that plagues FastSLAM. The reader is

refered to [?] for a detailed explanation. Broadly speaking,

the problem lies in the fact that, FastSLAM uses a finite

number of samples to represent a posterior over the space

of all possible trajectories (which grows exponentially). As a

result, the resampling process causes a loss in diversity in the

trajectories maintained and the sampled representation quickly

becomes optimistic. The result is a set of trajectories that are

largely similar to each other, in terms of their ancestry. The

aim here is to describe a method to compare the forgetfulness

of different Particle Filter schemes.

An indicator of the severity of the sample impoverishment

problem is the probability that a given trajectory survives k
resamplings. If the probability is linearly dependent on all the

previous states and observations, the problem is not so severe.

Definition 1. The Particle filter (using n samples) is said to
have forgotten its history from steps 1 to t − k if,

x1
j = x2

j = ... = xn
j , for1 ≤ j ≤ t − k

or in other words, if,

Σt
j = 0, for1 ≤ j ≤ t − k

Lemma 1. In FastSLAM, the probability that a trajectory x0:t

and map m survives after k steps is ∝ ∏k
i=1 p(zi|xi)k−i+1

Proof: For the posterior, p(x0:t, m|u1:t, z1:t), there are

two ways to generate a sampled set representation. Firstly, we

could sample directly from the true posterior (which of course

is impossible in practice). This true posterior is represented

as ptrue(x0:t). Secondly, we could use the Particle Filter

factorization where the posterior is given as,

pFS(x0:t) = res(p(xt|xt−1, ut)pFS(x0:t−1))

Now, the probability that a particular trajectory and map

x0:t, m is chosen at the end of the kth step is given for the

first method by,

ptrue(x0:k) = p(x0)
k∏

i=1

p(zi|xi)p(xi|xi−1, ui)

whereas for the second method it is given by,

pFS(x0:k) = res(p(xk|xk−1, uk)pFS(x0:k−1))

Under the assumption that the posterior obtained by Fast-

SLAM is equivalent to the true posterior, we may assume that

the two methods are equivalent. Thus we have,

pFS(x0:t) ⇔ ptrue(x0:t)

In other words, resampling based on weights at step k in

FastSLAM is equivalent to actually sampling from the true

posterior at step k. The probability that a trajectory x0:t

survives at time t (denoted as psurvival
FS (x0:t))is given by,

psurvival
FS (x0:t) = res(p(xt|xt−1, ut)pFS(x0:t−1))

= res(p(xt|xt−1, ut)psurvival
FS (x0:t−1)) ∗

res(p(xt−1|xt−2, ut−1)psurvival
FS (x0:t−2))

= (p(x0)
k∏

i=1

p(zi|xi)p(xi|xi−1, ui)) ∗

(p(x0)
k−1∏

i=1

p(zi|xi)p(xi|xi−1, ui)) ∗

...(p(x0))

=
k∏

j=0

j∏

i=0

ρi

∝
k∏

i=1

p(zi|xi)k−i+1

where, ρi = p(zi|xi)p(xi|xi−1, ui). Note, the chaining is

important in the context of resampling based schemes (and

will not occur in the context of methods like EKF), since

the probability of survival of a trajectory at step t is not

indicative of whether it will actually be retained at step t. For

example, consider trajectories x
[1]
0:t and x

[2]
0:t. Suppose that, the

first trajectory had a better weight at time t, but the second had

a better weight at time t+1. This would imply that the second

trajectory would not have been sampled at time t. Hence the
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probability of survival of a trajectory at step t is not indicative

of whether it will actually be retained at step t.
This leads us to the following definition of forgetfulness

that allows us to compare the forgetfulness of various Particle

Filter based methods.

Definition 2. A Particle Filter based method A is said to be
more forgetful than a Particle Filter based method B, if the
probability of survival of a hypothesis is lower in A than in B,
i.e.

psurvival
A (x0:t) ≤ psurvival

B (x0:t) (3)

This definition will come in handy when we are comparing

the performance of the proposed Particle Filter based schemes.

III. PARTICLE FILTER IN AN INFORMATION FILTER

FRAMEWORK

The Information Filter operates by building a graph of

relative constraints between successive robot poses and the

landmark positions. It stores this information in the Informa-

tion matrix Ω and Information vector ξ. In order to reduce the

size of Ω, ξ, in practice, multiple scans are combined to form

a local submap. In this section, we propose a method that uses

the Particle Filter to build such local submaps. Once these

local submaps have been built, their relative transformations

are obtained by scan correlation. These are then incorporated

into Ω, ξ using a separately defined measurement model.

A. Intuitive description

In the Information Filter framework, the full SLAM prob-

lem is refactored as,

p(x0:t, m|z1:t, u1:t) = ηp(x0)
∏

t

p(xt|xt−1, ut)

p(zt|xt, m)

Many implementations accumulate data obtained from mul-

tiple scans into a single local submap in order to reduce

the size of the information matrix. The rationale can be

explained by considering a compound motion model and a

compound measurement model. The normal motion model

returns p(xt|xt−1, ut). On the other hand, a compound motion

model returns p(xt, mtk|xt−k, ut−k+1:t, zt−k+1:t), where mtk

is the submap observed from t−k to t. More specifically, this

can be seen as describing a motion model

p(Xt|Xt−1, Ut)

from Xt−1 to Xt, where the state Xt−i is given by, xt−i∗k

and Ut is given by the function, com(ut−k+1:t, zt−k+1:t). Here

the exact nature of com is not important, as we shall see. What

is important,however is the observation that the above motion

model can be approximated by a Gaussian.

Before we proceed, we note that we have 3 things,

xt−k, ut−k+1:t, zt−k+1:t and we have to estimate the posterior

over xt. This is similar to the online SLAM problem for a

subset of the total set of states. This may be solved using

any of the methods in the literature. We advocate the use of a

Particle Filter, since it is robust with respect to nonlinearity and

data association ambiguity. The actual problem arises from the

fact that the Particle Filter maintains the posterior as a set of

weighted samples. The procedure to convert the set of weighted

samples into a Gaussian, given in [3], is described below.

Each particle in the posterior Pi with weight wi, reresenting

landmarks [μL1 , ΣL1 , μL2 , ΣL2 , ...] and trajectory traj, can be

represented by a Gaussian Mixture Model given by,

Pi =< wi, μi, Σi >

where, μi = [traj, μL1 , μL2 ....] and Σi = [Σtraj , ΣL1 ....]
Hence, if the posterior contain n particles, they can be

considered to be n GMMs. These can then be combined using

moments matching to obtain a single Gaussian whose mean μ
and variance Σ are given by,

μ =
∑

p

(wpμp) (4)

Σ =
∑

p

(wp(Σp + (μp − μ)(μp − μ)T ))

Thus we see that, regardless of the nature of Ut, we

can obtain a Gaussian for the model, p(Xt|Xt−1, Ut). The

conversion of the particle set into a Gaussian posterior in

case of unknown correspondences is also discussed in [3].

The choice of k depends upon the environment, the motion

model, the measurement model and the number of particles

being used. Naturally, the lesser the noise in the motion and

measurement models, the larger k can be.

The above procedure yields a local submap along with a

being a motion model. The compound measurement model

depends on the nature of the local submap. If it is a landmark

based map, then each submap can be viewed as a GMM, since

each landmark is represented by a Gaussian. If it is a raw

data based map, it can be converted into a GMM as shown

in [4].Either way, once we reduce the local submaps to a sum

of Gaussians representation, the required measurement model

can be obtained by the procedure outlined in [4].

B. Comparisons

1) With Standard GraphSLAM: The standard implemen-

tation of the Information Filter to the SLAM problem is

GraphSLAM, as described in [13]. The exact method described

therein, is an offline method. With respect to standard Graph-

SLAM, the proposed method results in lower linearization

errors.

This is because, in the standard approach to GraphSLAM,

the action and measurement models are linearized with respect

to the estimated state. Hence, the error due to linearization

depends on the error in the estimated state (especially on the

uncertainty in heading). This may grow with time, resulting

in poor map estimates. In the proposed method, by using the

Particle Filter to estimate the local submaps, we are reducing

the number of linearizations of the action and measurement

models (only once per local submap). Also, the heading

uncertainty within each submap can be assumed to be small,

thereby improving the quality of the maps produced.
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Algorithm 1 Method A

Ω ← ∞, ξ ← 0
ps ← initializeParticles(x0)
for all t do

ps ← PFactionUpdate(ps, ut)
ps ← PFmeasurementUpdate(ps, zt)
if stepNum = k or loop detected then

μ,Σ, LScur ← obtRelativeμAndΣ(ps)
ps ← initializeParticles(μ)
Ω, ξ ← IFactionUpdate(Ω, ξ, μ,Σ)
ẑt, Qt ← scan align(LScur, LS)
Ω, ξ ← IFmeasurementUpdate(ẑt, Qt)
LS ← append(LS, LScur)

end if
if loop detected then

Ω, ξ ← reduce(Ω, ξ)
Σtraj ← Ω−1

μtraj ← Σ−1ξ
end if
stepNum ← stepNum + 1

end for

2) With Standard FastSLAM: The standard implementation

of the Particle Filter to the SLAM problem is FastSLAM, as

described in [1]. The main advantage of the proposed method

with respect to standard FastSLAM is lesser overconfidence.

Lemma 2. Splitting a large trajectory into multple subtrajec-
tories and estimating each subtrajectory serparately results in
lesser forgetfulness than estimating a single long trajectory,
i.e.

psurvival
submaps(x0:t) ≥ psurvival

noSubmaps(x0:t) (5)

Proof: Consider the case, where we split the trajectory

into smaller trajectories of size k′ each. In this case, the

probability that the trajectory defined by x0:k survives is given

by the product of the probabilities that each sub trajectory

survives in the submap,

psurvival
submaps(x0:k) = psurvival

submap1(x0:k′)psurvival
submap2(xk′:2k′)...(6)

=
k/k′∏

i=0

k′∏

j=0

ρj+i∗k′

>
k∏

j=0

j∏

i=0

ρi

Since, the probability that a trajectory survives is higher in

the proposed method, we can assume that the proposed method

has a lesser tendency to be forgetful and consequently, its

particle set diversity is higher. This implies that the proposed

method can be used to close larger loops than traditional

FastSLAM.

IV. INFORMATION FILTER IN A PARTICLE FILTER

FRAMEWORK

The Particle Filter represents the required posterior using

a set of weighted samples. It is a well known fact that this

sample set exhibits exponential forgetting of its past due to

the resampling process. Hence, we use the Information matrix

and the Information vector as a means of remembering the past

uncertainty about the relative transformation between succes-

sive robot poses. The sample set can then be repopulated by

using the knowledge of this uncertainty, by Gibbs resampling.

A. Intuitive description

The major problem in using the Particle Filter for building

large scale maps is its tendency to become overconfident very

soon. In other words, the Particle Filter quickly loses diversity

in the trajectories maintained, thereby reducing its ability to

close large loops. The reason for this is the exponential growth

of the trajectory space, (since FastSLAM works in trajectory

space and not state space).

Thus we see, sample impoverishment causes the particle

set to cease to be representative of the actual posterior being

estimated (it actually makes it highly optimistic [9]). This

further means that the weighting scheme becomes less and

less accurate as time progresses, leading to its inability to close

large loops.

The method described in the previous section addressed this

problem by breaking up the map into submaps. The Particle

Filter was used to estimate only the local submap, thereby

making the method online only with respect to the current

local submap. Though this is sufficient in most cases, there

might arise a need to actually maintain an online pose and

map estimate with respect to the global map (for example, if

the robot is exploring the environment).

Therefore, in this section, we use the Particle Filter to

build a global map. The ”forgetfulness” of the Particle Filter

is counteracted by maintaining a corresponding Information

matrix Ω and Information vector ξ. They maintain the relative

transformation between the robot’s poses. In contrast to the

previous section, here, we do not obtain the trajectory by the

standard inference step of the Information Filter. Instead we

obtain the relative transformation between poses by inverting

the appropriate submatrix of Ω. The relative transformations

between all the given poses forms the set of conditional

distributions for the full SLAM posterior. So we can simply

use Gibbs resampling to obtain samples from the full posterior.

This will ensure that the particle set is a better representation

of the actual posterior. Before we describe the method, we

describe the Gibbs resampling method, with the appropriate

modifications to suit our purposes.

B. Gibbs Resampling

Gibbs sampling or Gibbs sampler is an algorithm to gener-

ate a sequence of samples from the joint probability distribu-

tion of two or more random variables. The purpose of such a

sequence is to approximate the joint distribution, or to compute

an integral (such as an expected value). Gibbs sampling is a
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special case of the MetropolisHastings algorithm, and thus an

example of a Markov chain Monte Carlo algorithm.

Gibbs sampling is applicable when the joint distribution is

not known explicitly, but the conditional distribution of each

variable is known. The Gibbs sampling algorithm generates

an instance from the distribution of each variable in turn,

conditional on the current values of the other variables. It can

be shown that the sequence of samples constitutes a Markov

chain, and the stationary distribution of that Markov chain is

just the sought-after joint distribution.

Suppose, we have to generate samples from a function

P (x0:t). Gibbs resampling is a sampling strategy that is

used when it is impossible to obtain samples from P (x0:t)
directly and P (x0:t) is defined in terms of its conditional

distributions. In our case, x0:t is the trajectory being es-

timated and P (x0:t) is the complete posterior over the

trajectory space,p(x0:t|z1:t, u1:t). Hence, in order to apply

Gibbs resampling, we need an expression for its conditionals

p(xi|x1, x2...xt, z1:t, u1:t) ∀i. Note that this essentially denotes

the relative transformation between xi−1 and xi when all other

states are known. This reduces to p(xi|xi−1, u1:i−1, z1:i−1),
which can be retrieved from the diagonal elements of the

reduced Information matrix Ω.

The procedure to generate the samples, given p(xi|xi−1) ∀i
is given as,

xk
2 ∼ p(xk

2 |xk−1
1 , xk−1

3 ...xk−1
t , u1:t, z1:t)

∼ p(xk
2 |xk−1

1 , u1:t, z1:t)
xk

3 ∼ p(xk
3 |xk

2 , u1:t, z1:t)
.

.

xk
t ∼ p(xk

t |xk
t−1, u1:t, z1:t)

The states, xk
1:t represent one trajectory sample. This process

is repeated to generate the n trajectory samples required.

C. Algorithm Description

In order to make the estimation of the full SLAM posterior

an online process, FastSLAM samples from the proposal distri-

bution, p(xt|xt−1, ut)p(x1:t−1|u1:t−1, z1:t−1), and assigns an

importance weight to each sample based on the measurement

model, p(zt|xt). This makes the process much faster, but intro-

duces the exponential dependence of the filter on its previous

states, discussed in Section 2. To avoid this dependence on the

previous states, we need to directly sample from the complete

posterior.

Now three questions arise, first, how do we build the

complete posterior? Second, how do we sample from it? And

lastly, when do we resample from the complete posterior?

The complete posterior p(x0:t, m|z1:t, u1:t) can be broken

down into a product of its conditionals, as,

p(x0:t, m|z1:t, u1:t) =
∏

i

p(xt, mt|xt−1, ut)p(zt|xt) (7)

Thus we can obtain samples from the complete posterior by

sampling from the conditionals.

In order to obtain the conditionals, we can use the In-

formation matrix Ω and Information Vector ξ (constructed

using the same procedure described in the previous section). It

follows from the method of their construction that the reduced

form of Ω and ξ can be used to obtain the entire trajectory

and its variance. However, we note that such an inference is

quite expensive since it involves the inversion of quite a large

matrix. Also to be noted is that, by appropriate transformations,

the relative transformation between successive states can be

obtained at a significantly lower cost. To see how, consider the

reduced form of Ω and ξ, which can be visualized as a graph

whose nodes are the states (x0 to xt) in the robot’s trajectory

and the edges are the constraints between them. Suppose the

state xt is dependent on x2, indicating a loop. Hence in order

to obtain the transformation between x2 and xt, the entire

submatrix (from indexes 2 to t) needs to be inverted. But in

order to obtain the relative transformation between x3 and x4,

we need to invert only that submatrix (from indexes 3 to 4).

Thus we see, states that are not loop states (i.e the first

and last states of a loop) will have their corresponding off

diagonal elements in Ω as zero. Thus, by making appropriate

transformations (to shift x3 to the origin, in this case), we

can obtain the relative transformation between x3 and x4 by

inverting their corresponding submatrix. This can be done in

O(1) time.

But what about loop states? How do we obtain the relative

transformations for those states? In this case, there is no option

but reduce the matrix further for all the non loop states that

form a part of the loop, till all the intermediate states are

replaced by the relative transformations. At the end of this step,

the 4 states in the loop will remain, the two loop states (x2 and

xt), the state immediately after the start of the loop (x3) and the

state immediately before the end of the loop (xt−1). All other

intermediate states are subsumed in the relative transformation

between these states. Now we just have to invert a submatrix

of size 4, which is again O(1) time. The only problem is

that O(t) reductions are required. Since for t states, there are

O(t) relative transformations to be estimated, the worst case

complexity for this process becomes O(t2). But in practice,

very few of the states are actually loop states, thereby making

this process quite efficient (almost close to O(t)).
Now that we have the conditionals, all we need to do to

resample from the complete posterior is to resample from these

conditionals using Gibbs resampling.

This now brings us to the last question, when should we

resample from the complete posterior? While there is no clear

theoretical way to decide this, we can resample, every time the

effective number of particles required to represent the posterior,

Neff , (given as 1∑
i w2

i
) falls below a prespecified threshold

or if a loop is detected. This threshold is map specific and

determining it in practice is one of the avenues for future

research.

Note, the function being approximated is the same as in

traditional FastSLAM, but the procedure employed is differ-

ent. FastSLAM approximates the posterior by first obtaining

weights for the current step and then combining it with the past
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weights. This results in forgetfulness but is efficient enough to

make the method usable in real time. On the other hand, the

above method will maintain diversity at the cost of increased

update complexity.

Algorithm 2 Method B

Ω ← ∞, ξ ← 0
ps ← initializeParticles(x0)
ps ← PFactionUpdate(ps, ut)
μ,Σ ← obtRelativeμAndΣ(ps)
Ω ← Ω + Σ
ξ ← ξ + μ
Ω, ξ ← IFmeasurementUpdate(zt)
Neff ← 1∑

i w2
i

if loop detected or Neff < threshold then
Ω, ξ ← reduce(Ω, ξ)
conditionals ← obtainConditionals(Ω, ξ)
ps ← gibbsResampling(conditionals)

end if
ps ← PFmeasurementUpdate(ps, zt)

D. Comparisons

1) With FastSLAM: The important difference in the pro-

posed resampling scheme and the traditional resampling

scheme is that if a particle is weeded out by traditional

resampling, the entire trajectory is lost and cannot be recovered

again, whereas in the proposed scheme, it is the relative

transformation that is resampled. Hence the entire trajectory

is not lost. This makes the proposed method more resistant

to sample impoverishment compared to traditional FastSLAM.

To see why, let us compare the probability of a trajectory p
surviving k steps is,

psurvival
Gibbs (x0:t) = p(x0:t|z1:t, u1:t) (8)

=
∏

i

p(zi|xi)p(xi|xi−1, ui)

Instead of,

psurvival
FS =

∏

i

(p(zi|xi)p(xi|xi−1, ui))t−i+1

Thus it can be seen that in the proposed method, the samples

are not exponentially forgotten. Instead, there is only a linear

dependence, thereby reducing the tendency of the filter to

forget past hypotheses. This improves the diversity in the set

of maintained trajectories, enabling it to close bigger loops.

We repeat, however, this comes at the price of increased time

complexity in the sampling step.

2) With GraphSLAM: The Gibbs resampling step is a faster

way of obtaining the complete path from the Information

Matrix and Information Vector compared to the matrix in-

version step used in GraphSLAM. To see why, consider, the

complexity of each step in the proposed method.

1) reduction step = O(N)
2) obtaining the conditionals = O(t)
3) gibbs resampling = O(nt)

4) resampling = O(n)
Thus the overall complexity of the proposed method is O(N +
nt), where n is the number of particles being used, t is

the length of the trajectory and N are the total number of

landmarks. The complexity of GraphSLAM is given as,

1) reduction step = O(N)
2) path inference = O(t2.4) (involves the matrix inversion)

Thus the overall complexity is O(N + t2.4). For large trajecto-

ries, this becomes much larger that the O(N +nt) complexity

for the proposed method.

V. CONCLUSION

This paper presents two methods that combine the use of

the Particle Filter and the Information Filter. The first uses

the Particle Filter to build local submaps and combines them

into a global map using the Information Filter. A mathematical

derivation for the method was provided to justify it. The

second method uses the Particle Filter to build the global

map online and uses the Information Matrix to remember

its past uncertainty. Whenever the particle diversity is too

low, (for example, while closing loops), the particles are

resampled using a Gibbs resampling strategy. The advantages

of both methods with respect to traditional FastSLAM and

GraphSLAM are described.
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